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• Best approximations and convergents

• A naive shortest vector algorithm based on euclid

Fast basis reduction

• Identifying the “shortest convergent”
• Computing shortest convergent w.r.t.`∞-norm with Schönages speedup
• Reduced bases
• Fast basis reduction via (Schönhage 1971) and (Gauß 1801)
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Unimodular transformations

Unimodular transformationof basisA:

A·U,

whereU ∈ Z2×2 with det(U) =±1, .i.e.,U unimodular

Matrix A basis ofΛ if and only if A·U basis ofΛ, U unimodular

Examples of unimodular transformations

• swapping of columns

• adding integral multiples of one column to another



The Gaussian reduction algorithm

GAUSS(b1,b2)

repeat

arrange thatb1 is the shorter vector ofb1 andb2

find k∈ Z such thatb2−kb1 is of minimal euclidean length

b2← (b2−kb1) (normalization step)

until k = 0

return (b1,b2)

k in repeat-loop is nearest integer to(bT
1 b2)/(bT

1 b1)
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• Lagarias (1980): Complexity ofGAUSSO(n3)

• Schönhage (1991) and Yap (1992) new reduction algorithm:

Complexity O(M(n) logn) whereM(n): complexity ofn-bit

integer multiplication;

algorithms fairly involved

• This talk: Fast basis reduction via Schönhage’s (1971) classical

gcd-speedup andGAUSS
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The Hermite Normal Form

Given lattice basisA =
(a1 a2

a3 a4

)
∈ Z2×2, compute integersx, y with

gcd(a3,a4) = d = xa3 +ya4( a4/d x
−a3/d y

)
unimodular

Then

a1 a2

a3 a4

 a4/d x

−a3/d y

=

a b

0 c

 ∈ Z2×2

We can assume thatc> 0 anda> b> 0

Hermite normal form
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Complexity of Hermite normal form

Given integersa andb one can compute integersx andy with

gcd(a,b) = xa+yb

in time O(M(n) logn) (Schönhage 1971)

Complexity of HNF:O(M(n) logn)

Assuming: Lattice is given by its Hermite normal form



Best approximations
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x′/y′ with y′ 6 y satisfy

|y′α−x′|> |yα−x|
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Shortest vectors and best approximations

Λ =


a b

0 c

x

y

 | x,y∈ Z



Theorem. There exists a shortest vector
(−xa+yb

yc

)
, x∈ N0, y∈ N+ of

Λ such that at least one of the following conditions is satisfied.

• The fraction x/y is a best approximation to the number b/a.

• If the fraction p/q is the reduced representation of b/a, then p is

odd, q is even, x∈ {bp/2c,dp/2e} and y= q/2.
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Best approximations via euclidean algorithm

x/y best approximation ofb/a, thenx/y is aconvergentof b/a

Convergents ofα ∈Q inductively defined

• bαc

• bαc+1/c, wherec convergent of 1/(α−bαc)
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The earth turns around the sun in 365+104629/432000 days.

First convergent is 365

Second convergent: 365+1/4, since 4 is first convergent of

432000/104629= 4+13484/104629

Leap year all 4 years
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Pope Gregor XIII (1582) used fifth convergent

365+
1

4+
1

7+
1

1+
1

3+
1

6

= 365+194/801

Every 800 years skip 6 leap years; every year divisible by 100 but not

by 400

The first year the in which calendar is 1 day ahead is 4915



Computing convergents

Euclidean algorithm

EXGCD(a,b)

M←

1 0

0 1


n← 0

while (b 6= 0) do

q← ba/bc

M←M

q 1

1 0


(a,b)← (b,a−qb)
n← n+1

return (d = a, x = (−1)nM2,2, y = (−1)n+1M1,2)
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Computing convergents

Let M(k), k> 0, denoteM afterk-th iteration of while-loop

Well known fact:

k-th convergent ofa/b is M(k)
1,1/M

(k)
2,1
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Naive shortest vector algorithm

• Compute Hermite normal form
(

a b
0 c

)
of A

• Compute reduced fractionp/q of b/a and vectors

(−bp/2ca+ bq/2cb,bq/2cc)T and(a,0)T store shortest one in

MIN

• Compute convergentsgk/hk of b/a with EXGCD(b,a) and

compare the length of the induced vector(−gk a+hk b,hk c)T

with MIN . If shorter, replaceMIN

In the endMIN contains a shortest vector

Linear search through all convergents ofb/a



Finding shortest vector w.r.t̀∞-norm

Consider set of vectors
−gk a+hk b

hk c

 | k = 0, . . . , t

 , (1)

whereβk = gk/hk, 06 k6 t are the convergents ofb/a.

Proposition. Shortest vector in(1) w.r.t. `∞ is last convergent of b/a

outside the interval[(b−c)/a,(b+c)/a] or first convergent of b/a

inside[(b−c)/a,(b+c)/a].
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Finding shortest vector w.r.t̀∞-norm

Common convergent of interval[α1,α2]: Convergentβk of α1 andα2

wherek maximal

Schönhage (1971): One can compute common convergentβk and

corresponding matrixM(k) of two rationalsα1,α2 ∈Q in time

O(M(n) logn)

Proposition. Let βk = gk/hk common convergent of

[(b−c)/a,(b+c)/a]. Then k-th, k+1-st or k+2-nd convergent of

b/a is shortest vector in(1) w.r.t. the`∞-norm.
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Fast shortest vector algorithm

• Compute HNF
(

a b
0 c

)
of A

• Compute reduced representationp/q of b/a and vectors

(a,0)T , (−bp/2ca+ bq/2cb,bq/2cc)T ; store shortest nonzero

one in a containerMIN

• Compute common convergentβk of [(b−c)/a,(b+c)/a] and

corresponding matrixM(k). Compute next two convergents of

b/a with EXGCD; ReplaceMIN if one of convergents yields

shorter vector
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Reduced bases

Lattice basis(b1,b2) is reducedif enclosed angle in range 90◦ ±30◦

b1

b2b2−kb1

d

α

h

‖d‖6 1/2‖b1‖ and‖h‖= sinα‖b2‖ supposeα< 60◦

‖b2−kb1‖2 = ‖h‖2 +‖d‖2 = 1/4‖b1‖2 +(sinα)2‖b2‖2

6 (1/4+(sinα)2)‖b2‖2< ‖b2‖2



Almost reduced basis

Proposition. There existsO(M(n) logn) time algorithm that

computes basis B ofΛ defined by A∈ Z2×2, with property that the first

column of B is shortest vector w.r.t.`∞-norm.



Almost reduced basis

Proposition. There existsO(M(n) logn) time algorithm that

computes basis B ofΛ defined by A∈ Z2×2, with property that the first

column of B is shortest vector w.r.t.`∞-norm.

Analysis of Gaussian algorithm (Lagarias 1980) reveals this basis

almost reduced



Almost reduced basis

Proposition. There existsO(M(n) logn) time algorithm that

computes basis B ofΛ defined by A∈ Z2×2, with property that the first

column of B is shortest vector w.r.t.`∞-norm.

Analysis of Gaussian algorithm (Lagarias 1980) reveals this basis

almost reduced

Corollary. There existsO(M(n) logn) time algorithm that computes

reduced basis B ofΛ defined by A∈ Z2×2
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Open Problem

What about shortest vector problem in arbitraryfixeddimension?

Fastest known algorithm of Kannan (1987) runs in time O(M(n)n)

Challenge:

Prove that shortest vector problem in arbitrary fixed dimension can be

solved in time O(M(n) logn)


