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Shortest vectors

Shortest vector of\: ve A with v 0 and||v|| < ||u|| for allu e A

u=+0

Applications

e Strongly polynomial time algorithms in combinatorial
optimization Frank & Tardosz (1987)
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Unimodular transformations

Unimodular transformationf basisA:

A-U,

whereU € Z%*2 with detU) = +1, .i.e.,U unimodular
Matrix A basis ofA if and only if A-U basis ofA, U unimodular

Examples of unimodular transformations

e swapping of columns
e adding integral multiples of one column to another



The Gaussian reduction algorithm
GAUSS(by, by)

repeat
arrange thab; is the shorter vector df; andbs,
find k € Z such that, — kb i1s of minimal euclidean length
bo «— (bp—kby) (normalization step

until k=20

return (b, bo)

kin repeatloop is nearest integer {®] by)/(b] by)
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Complexity of GAUSS
e Lagarias (1980): Complexity afAUSSO(Nn®)

e Schonhage (1991) and Yap (1992) new reduction algorithm:
Complexity QM (n)logn) whereM(n): complexity ofn-bit
Integer multiplication;

algorithms fairly involved

e This talk: Fast basis reduction via Schonhage’s (1971) classic
gcd-speedup andAUSS
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The Hermite Normal Form

Given lattice basi®\ = (g 82) € Z#*4, compute integers, y with
gcdas,ay) = d = xXag +yau

(_ag?{;jd ;(,) unimodular

Then

ap a au/d X _[a b _ 72x2

az a4/ \—ag/d vy 0 c

We can assume that>0anda>b >0

Hermite normal form
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Complexity of Hermite normal form

Given integersa andb one can compute integexandy with

gcda,b) = xa+yb

in time O(M(n) logn) (Schonhage 1971)

Complexity of HNF:O(M(n)logn)

Assuming: Lattice is given by its Hermite normal form
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X' /y with y <y satisfy

ya—x| > |ya—x
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Shortest vectors and best approximations
a b\ [x
N\ = I x,yeZ

Theorem. There exists a shortest vect()rxa+yb) X € Ng, y € N of
A\ such that at least one of the following conditions is satisfied.

e The fraction Xy is a best approximation to the numbefab

e If the fraction /g is the reduced representation ofdy then p is
odd, giseven, x {|p/2],|[p/2|} and y=q/2.
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Best approximations via euclidean algorithm

X/y best approximation df/a, thenx/y is aconvergenof b/a

Convergents ofi € Q inductively defined

_a_

_a_

+ 1/c, wherec convergent of 1(a — |a|)
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The Gregorian calendar
The earth turns around the sun in 36304 629432000 days.
First convergent is 365

Second convergent: 3651/4, since 4 is first convergent of
432000'104629= 4+ 13484/104629

Leap year all 4 years
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The Gregorian calendar

Pope Gregor Xlll (1582) used fifth convergent

1
365+ — 365+ 194/801

Every 800 years skip 6 leap years; every year divisible by 100 but
by 400

The first year the in which calendar is 1 day ahead is 4915



Computing convergents

Euclidean algorithm

EXGCD(a,b)

1 O
M «—

n—~o0
while (b # 0) do
q« [a/b]

M— M (q 1)
1 O
(a,b) — (b,a—qgb)

n«~—n+1
return (d =a,x=(—1)"Mp2,y=(—1)""My>)
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Computing convergents

Let MK k> 0, denoteM afterk-th iteration of while-loop
Well known fact:

k-th convergent oa/bis M iki / Mg?
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Naive shortest vector algorithm
e Compute Hermite normal forr(d 2) of A

e Compute reduced fractiop/q of b/a and vectors
(—|p/2|a+|g/2]b,|q/2]c)" and(a,0)T store shortest one in
MIN

e Compute convergentxk/hg of b/awith ExGccb(b,a) and
compare the length of the induced vectergca+ h¢b, hec)’
with MIN. If shorter, replace/IN

In the endvIN contains a shortest vector

Linear search through all convergentdpf



Finding shortest vector w.r,-norm

Consider set of vectors

{(gk§+hkb) kO,...,t}, (1)
kC

wherefx = gk/hk, 0 < k <t are the convergents of a.

Proposition. Shortest vector iifl) w.r.t. /. is last convergent of fa
outside the interval(b—c)/a, (b+c)/a] or first convergent of a
inside|(b—c)/a,(b+c)/al.
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Finding shortest vector w.r,-norm

Common convergent of intervalk,02|: Convergenfk of a; andas
wherek maximal

Schonhage (1971): One can compute common convefgentd
corresponding matri¥ (¥ of two rationalsa1, 0, € Q in time
O(M(n)logn)

Proposition. LetBx = gk/hx common convergent of
(b—c)/a, (b+c)/al. Then k-th, k- 1-st or k+ 2-nd convergent of
0/ais shortest vector iQl) w.r.t. the/,-norm.
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Fast shortest vector algorithm
e Compute HNHa?) of A

e Compute reduced representatipfg of b/a and vectors
(a,0)", (—|p/2|a+|q/2]b,|g/2]c)" ; store shortest nonzero
one in a containemIN

e Compute common convergeft of [(b—c)/a, (b+c)/a] and
corresponding matri¥ (K. Compute next two convergents of
b/awith EXGCD; ReplaceviN if one of convergents yields
shorter vector
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Reduced bases

Lattice basigbs,by) is reducedf enclosed angle in range 9@ 30°

||l < 1/2]|by || and||h| = sina|bz||

b — ki |2

[hl*+1d]|* = 1/4|
< (L/4+(sina)?) bz

suppose < 60°

01 |+ (sinar) || bz |

2 2
< |Ibz|



Almost reduced basis

Proposition. There existO(M(n)logn) time algorithm that
computes basis B @f defined by Ac Z%*2, with property that the firs
column of B Is shortest vector w.i,-norm.



Almost reduced basis

Proposition. There existO(M(n)logn) time algorithm that
computes basis B @f defined by Ac Z%*2, with property that the firs
column of B Is shortest vector w.i,-norm.

Analysis of Gaussian algorithm (Lagarias 1980) reveals this basis
almost reduced



Almost reduced basis

Proposition. There existO(M(n)logn) time algorithm that
computes basis B @f defined by Ac Z%*2, with property that the firs
column of B Is shortest vector w.i,-norm.

Analysis of Gaussian algorithm (Lagarias 1980) reveals this basis
almost reduced

Corollary. There exist©(M(n)logn) time algorithm that computes
reduced basis B of defined by Ac Z2<?
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Summary of results

e Shortest vectors can be found with the euclidean algorithm



Summary of results

e Fast basis reduction can be solely based on Schdonhage’s (19
result and reduction algorithm of Gauss (1801)
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Open Problem

What about shortest vector problem in arbitrxgd dimension?

Fastest known algorithm of Kannan (1987) runs in tim{&On)n)

Challenge:

Prove that shortest vector problem in arbitrary fixed dimension ca
solved in time @M (n)logn)



