
Stephan Lehmke Dynamic Presentations with TEXPower

7 Navigation helpers

113

Further development

• Add more navigation buttons (and a more sensible

naming scheme).

• More flexible labelling of standard buttons.

• Add means for inline bookmarks (parts of the table of

contents displayed in a panel as a ‘jump table’).

• Sensible handling of thumbnails.

• Provide progress indicators which can also be used to

jump to certain parts of the presentation.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

114

8.1 Basic display effects

8.1.1 The \pause command

\pause ships out the current page, starts a new page and

copies whatever was on the current page onto the new

page, where typesetting is resumed.

This will create the effect of a pause in the presentation.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

115

Things to pay attention to

1. \pause should appear in vertical mode only, i. e.

between paragraphs or at places where ending the

current paragraph doesn’t hurt.

2. This means \pause is forbidden in all boxed material

(including tabular), headers/footers, and floats.

3. \pause shouldn’t appear either in environments

which have to be closed to work properly, like

picture, tabbing, and (unfortunately) environments

for aligned math formulas.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

116

4. \pause does work in all environments which mainly

influence paragraph formatting, like center, quote or

all list environments.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

117

8.1.2 The \stepwise command

\stepwise{〈contents〉} is a command for displaying

some part of a LATEX document (which is contained in

〈contents〉) ‘step by step’.

If 〈contents〉 contains one or more constructs of the

form \step{〈stepcontents〉} , the following happens:

1. The current contents of the page are saved (as with

\pause).

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

118

2. As many pages as there are \step commands in

〈contents〉 are produced.

Every page starts with what was on the current page

when \stepwise started.

The first page also contains everything in 〈contents〉
which is not in 〈stepcontents〉 for any \step

command.

The second page additionally contains the

〈stepcontents〉 for the first \step command, and

so on, until all 〈stepcontents〉 are displayed.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

119

3. When all 〈stepcontents〉 are displayed, \stepwise

ends and typesetting is resumed (still on the current

page).

This will create the effect that the \step commands are

executed ‘step by step’.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

120

Things to pay attention to

1. \stepwise should appear in vertical mode only, i. e.

between paragraphs, just like \pause.

2. Don’t put \pause or nested occurrences of

\stepwise into 〈contents〉.

3. Structures where \pause does not work (like

tabular or aligned equations) can go completely into

〈contents〉, where \step can be used freely.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

121

4. \step can go in 〈stepcontents〉. The order of

execution of \step commands is the order in which

they appear in 〈contents〉, independent of nesting.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

122

\begin{itemize}

\item one\pause

\item two\pause

\item three

\end{itemize}

gives

• one

• two

• three

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

123

\stepwise

{%

one,

\step{two, }%

\step{three.}%

}

gives

one, two, three.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

124

8.2 Customising display effects

8.2.1 \boxedsteps and \nonboxedsteps

By default, 〈stepcontents〉 belonging to a \step which

is not yet ‘active’ are ignored altogether. This makes it

possible to include e. g. tabulators & or line breaks into

〈stepcontents〉 without breaking anything.

Sometimes, the desired behaviour of a \step which is not

yet ‘active’ is to create an appropriate amount of blank

space where 〈stepcontents〉 can go as soon as it is

activated.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

125

The simplest and most robust way of doing this is to

create an empty box (aka \phantom) with the same

dimensions as the text to be hidden.

This behaviour is toggled by the following commands.

\boxedsteps makes \step create a blank box the size

of 〈stepcontents〉 when inactive and put

〈stepcontents〉 into a box when active.

\nonboxedsteps activates the default behaviour.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

126

\stepwise

{\begin{tabular}{ll}

\hline 1 & one%

\step{\\ 2 & two}%

\step{\\ 3 & three}\\

\hline

\end{tabular}

\par\boxedsteps

\begin{tabular}{ll}

\hline 1 & one\\

\step{2}&\step{two}\\

\step{3}&\step{three}\\

\hline

\end{tabular}}

gives

1 one

2 two

3 three

1 one

2 two

3 three

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

127

8.2.2 Custom versions of \stepwise

Sometimes, it might happen that vertical spacing is

different on every page of a sequence generated by

\stepwise, making lines ‘wobble’.

This is caused by interactions between different ways

vertical spacing is added to the page. Hopefully, problems

caused this way can be reduced until the first beta release.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

128

There are two custom versions of \stepwise which

should produce better vertical spacing.

\liststepwise{〈contents〉} works exactly like

\stepwise, but adds an ‘invisible rule’ before

〈contents〉. Use for list environments and aligned

equations.

\parstepwise{〈contents〉} works like

\liststepwise, but \boxedsteps is turned on by

default. Use for texts where \steps are to be filled

into blank spaces.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

129

8.2.3 Starred versions of \stepwise commands

Usually, the first page of a sequence produced contains

only material which is not part of any 〈stepcontents〉.
The first 〈stepcontents〉 are displayed on the second

page of the sequence.

For special effects, it might be desirable to have the first

〈stepcontents〉 active even on the first page of the

sequence.

All variants of \stepwise have a starred version (e. g.

\stepwise*) which does exactly that.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

130

8.2.4 The optional argument of \stepwise

Every variant of \stepwise takes an optional argument,

like this: \stepwise[〈settings〉]{〈contents〉} .

〈settings〉 will be placed right before the internal loop

which produces the sequence of pages. It can contain

settings of parameters which modify the behaviour of

\stepwise or \step. 〈settings〉 is placed inside a group

so all changes are local to this call of \stepwise.

Some internal macros and counters which can be adjusted

are explained in the following.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

131

8.2.5 Customizing the way 〈stepcontents〉 is

diplayed

Internally, there are three macros (taking one argument

each) which control how 〈stepcontents〉 is displayed:

\displaystepcontents, \hidestepcontents, and

\activatestep. Virtually, every

\step{〈stepcontents〉} is replaced by

\hidestepcontents{〈stepcontents〉}
when this step is not yet active.

\displaystepcontents{\activatestep{〈stepcontents〉}}

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

132

when this step is activated for the first time.

\displaystepcontents{〈stepcontents〉}
when this step has been activated before.

By redefining these macros, the behaviour of \step is

changed accordingly. You can redefine them inside

〈contents〉 to provide a change affecting one \step only,

or in the optional argument of \stepwise to provide a

change for all \steps inside 〈contents〉.

\activatestep is set to \displayidentical by default,

the default settings of \hidestepcontents and

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

133

\displaystepcontents depend on whether

\boxedsteps or \nonboxedsteps (default) is used.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

134

texpower offers nine standard definitions.

For interpreting \displaystepcontents:

\displayidentical Simply expands to its argument.

The same as LATEXs \@ident. Used by

\nonboxedsteps (default).

\displayboxed Expands to an \mbox containing its

argument. Used by \boxedsteps.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

135

For interpreting \hidestepcontents:

\hideignore Expands to nothing. Used by

\nonboxedsteps (default).

\hidephantom Expands to a \phantom containing its

argument. Used by \boxedsteps.

\hidevanish In a colored document, makes its

argument ‘vanish’ by setting all colors to

\vanishcolor (defaults to pagecolor). This will

give weird results with structured backgrounds.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

136

s \hidetext Produces blank space of the same

dimensions as the space that would be occupied if its

argument would be typeset in the current paragraph.

Respects automatic hyphenation and line breaks.

This command needs the soul package to work,

which is not loaded by texpower itself. Consult the

documentation of soul concerning restrictions on

commands implemented using soul.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

137

\hidedimmed In a colored document, displays its

argument with dimmed colors. Note that this doesn’t

make the argument completely invisible.

For monochrome documents, there is no useful

interpretation for this command, so it is disabled.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

138

For interpreting \activatestep:

\highlightboxed If the colorhighlight option is set,

expands to a box with colored background containing

its argument. Otherwise, expands to an \fbox

containing its argument. The resulting box has the

same dimensions as the argument (background may

overlap surrounding text).

There is a new length register \highlightboxsep

which acts like \fboxsep for the resulting box and

defaults to 0.5\fboxsep.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

139

s \highlighttext If the colorhighlight option is set,

puts its argument on colored background. Otherwise,

underlines its argument. The resulting text has the

same dimensions as the argument (background may

overlap surrounding text).

\highlightboxsep is used to determine the extent

of the coloured box(es) used as background.

This command needs the soul package to work

(compare the description of \hidetext).

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

140

\highlightenhanced In a colored document, displays

its argument with enhanced colors.

For monochrome documents, there is no useful

interpretation for this command, so it is disabled.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

141

8.2.6 Variants of \step

There are a couple of custom versions of \step which

make it easier to achieve special effects needed frequently.

\bstep Like \step, but is always boxed.

\bstep{〈stepcontents〉} is implemented in principle

as {\boxedsteps\step{〈stepcontents〉}}.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

142

\switch{〈ifinactive〉}{〈ifactive〉} is a variant of

\step which, instead of making its argument appear,

switches between 〈ifinactive〉 and 〈ifactive〉
when activated.

In fact, \step{〈stepcontents〉} is in principle

implemented by

\switch{\hidestepcontents{〈stepcontents〉}}
{\displaystepcontents{〈stepcontents〉}}

Beware of problems when 〈ifinactive〉 and

〈ifactive〉 have different dimensions.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

143

\dstep A variant of \step which takes no argument,

but simply switches colors to ‘dimmed’ if not active.

\vstep A variant of \step which takes no argument,

but simply switches all colors to \vanishcolor

(defaults to pagecolor) if not active.

\steponce Like \step, but goes inactive again in the

subsequent step.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

144

\multistep is a shorthand macro for executing several

steps successively. The syntax is

\multistep*[〈activatefirst〉]{〈n〉}{〈stepcontents〉}

where 〈n〉 is the number of steps.

Only one instance of 〈stepcontents〉 is displayed at

a time. Inside 〈stepcontents〉, a counter substep

can be evaluated which tells the number of the

current instance.

In the starred form the last instance of

〈stepcontents〉 stays visible.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

145

\movie works like \multistep, but between \steps,

pages are advanced automatically every 〈dur〉
seconds. The syntax is

\movie{〈n〉}{〈dur〉}[〈stop〉]{〈stepcontents〉}
where 〈n〉 is the number of steps. The additional

optional argument 〈stop〉 gives the code (default:

\stopAdvancing) which stops the animation.

(\movie accepts the same first optional argument as

\multistep but it was left out above.)

\overlays is another shorthand macro for executing

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

146

several steps successively. In contrast to \multistep,

it doesn’t print things after each other, but over each

other. The syntax is

\overlays[〈activatefirst〉]{〈n〉}{〈stepcontents〉}

where 〈n〉 is the number of steps. Inside

〈stepcontents〉, a counter substep can be

evaluated which tells the number of the current

instance.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

147

\restep , \rebstep , \reswitch , \redstep , \revstep .

Frequently, it is desirable for two or more steps to

appear at the same time, for instance to fill in

arguments at several places in a formula at once.

\restep{〈stepcontents〉} is identical with

\step{〈stepcontents〉}, but is activated at the

same time as the previous occurrence of \step.

\rebstep , \reswitch , \redstep , and

\revstep do the same for \bstep, \switch,

\dstep, and \vstep.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

148

8.3 Controlling the order of display

8.3.1 Optional arguments of \step

The variants of \step take two optional arguments for

influencing the mode of activation, like this:

\step[〈activatefirst〉][〈whenactive〉]{〈stepcontents〉} .

Both 〈activatefirst〉 and 〈whenactive〉 should be

conditions in the syntax of the \ifthenelse command.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

149

〈activatefirst〉 checks whether this \step is to be

activated for the first time. The default value is

\value{step}=\value{stepcommand} . By using

\value{step}=〈n〉, this \step can be forced to appear

as the nth one.

〈whenactive〉 checks whether this \step is to be

considered active at all. The default behaviour is to check

whether this \step has been activated before (this is

saved internally for every step).

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

150

8.3.2 Finding out what’s going on

Inside 〈settings〉 and 〈contents〉, you can refer to the

following internal state variables which provide information

about the current state of the process executed by

\stepwise:

counter: firststep The number from which to start

counting steps (see counter step below). Is 0 by

default and 1 for starred versions of \stepwise. You

can set this in 〈settings〉 for special effects.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

151

counter: totalsteps The total number of \step

commands occurring in 〈contents〉.

counter: step The number of the current iteration,

i. e. the number of the current page in the sequence

of pages produced by \stepwise. Runs from

\value{firststep} to \value{totalsteps}.

counter: stepcommand The number of the \step

command currently being executed.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

152

boolean: firstactivation true if this \step is

active for the first time, false otherwise.

boolean: active true if this \step is currently active,

false otherwise.

stepcommand, firstactivation, and active are useful

only inside 〈stepcontents〉.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

153

8.3.3 \afterstep

It might be neccessary to set some parameters which

affect the appearance of the page (like page transitions)

inside 〈stepcontents〉. However, the \step commands

are usually placed deeply inside some structure, so that all

local settings are likely to be undone by groups closing

before the page is completed.

\afterstep{〈settings〉} puts 〈settings〉 right before

the end of the page, after the current step is performed.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

154

Things to pay attention to

1. There can be only one effective value for 〈settings〉.
Every occurrence of \afterstep overwrites this

value globally.

2. \afterstep will not be executed in 〈stepcontents〉
if the corresponding \step is not active, even if

〈stepcontents〉 is displayed owing to a redefinition

of \hidestepcontents.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

155

8.4 Page transitions and automatic advancing

8.4.1 Page transitions

These commands work only if the hyperref package is

loaded.

The following page transition commands are defined:

h \pageTransitionSplitHO Split Horizontally to the

outside.

h \pageTransitionSplitHI Split Horizontally to the

inside.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

156

h \pageTransitionSplitVO Split Vertically to the

outside.

h \pageTransitionSplitVI Split Vertically to the inside.

h \pageTransitionBlindsH Horizontal Blinds.

h \pageTransitionBlindsV Vertical Blinds.

h \pageTransitionBoxO Growing Box.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

157

h \pageTransitionBoxI Shrinking Box.

h \pageTransitionWipe{〈angle〉}
Wipe from one edge of the page to the facing edge.

〈angle〉 is a number between 0 and 360 which

specifies the direction (in degrees) in which to wipe.

Apparently, only the values 0, 90, 180, 270 are

supported.

h \pageTransitionDissolve Dissolve.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

158

h \pageTransitionGlitter{〈angle〉}
Glitter from one edge of the page to the facing edge.

〈angle〉 is a number between 0 and 360 giving the

direction (in degrees) in which to glitter.

Apparently, only the values 0, 270, 315 are supported.

h \pageTransitionReplace Simple Replace (the

default).

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

159

Things to pay attention to

1. The setting of the page transition is a property of the

page, i. e. whatever page transition is in effect when

a page break occurs, will be assigned to the

corresponding pdf page.

2. The page transition setting is local to groups.

Make sure no LATEX environment is ended between a

\pageTransition setting and the next page break.

In particular, in 〈stepcontents〉, \afterstep should

be used.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

160

3. Setting page transitions works well with \pause.

Here, \pause acts as a page break, i. e. a different

page transition can be set before every occurrence of

\pause.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

161

8.4.2 Automatic advancing of pages

If you have loaded the hyperref package, then the

following command is defined which enables automatic

advancing of pdf pages.

h \pageDuration{〈dur〉} causes pages to be advanced

automatically every 〈dur〉 seconds. 〈dur〉 should be a

non-negative fixed-point number.

Depending on the pdf viewer, this will happen only in

full-screen mode.

Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

162

The same restrictions as for page transitions apply. In

particular, the page duration setting is undone by the end

of a group, i. e. it is useless to set the page duration if a

LATEX environment ends before the next page break.

There is no ‘neutral’ value for 〈dur〉 (0 means advance as

fast as possible). You can make automatic advancing stop

by calling \pageDuration{}. texpower offers the

custom command

h \stopAdvancing

to do this.

