
1

Dynamic Online and Beamer Presentations

in PDF using LATEX and TEXPower

Stephan Lehmke

Lehrstuhl Informatik I

Universität Dortmund

LUT, September 



Stephan Lehmke Dynamic Presentations with TEXPower

Introduction

2

Here: Presentation = pdf file presented in full screen

mode.

Presentations need dedicated typographic rules, even

when compared to printed slides.



Stephan Lehmke Dynamic Presentations with TEXPower

Introduction

3

Beamer presentations vs. printed slides

presentation slide

resolution low high

orientation landscape portrait/landscape

colors ok difficult

space usage good incomplete

dynamics prepared in advance manual

navigation links, buttons slide shuffling



Stephan Lehmke Dynamic Presentations with TEXPower

Introduction

4

When preparing a presentation, . . .

• plan carefully in advance;

• use dedicated packages;

• landscape; no frames or borders;

• ensure font readability;

• emphasize with color;

• use navigation aids.



Stephan Lehmke Dynamic Presentations with TEXPower

Introduction

5

TEXPower is planned as an ‘all inclusive’ bundle to aid

creating presentations.

Some parts are already fully functional, others are in

‘proof of concept’ stage, and a couple are only planned.

Fully functional:

• color management;

• font management;

• basic effects for incremental display.



Stephan Lehmke Dynamic Presentations with TEXPower

Introduction

6

Prototypical:

• page backgrounds;

• panels;

• navigation aids.

Planned:

• JavaScript; PDF actions;

• selfdefined page transitions;

• ‘fancy’ effects for incremental display.



Stephan Lehmke Dynamic Presentations with TEXPower

Structure of the lecture

7

Day One

1 The TEXPower bundle

2 The powersem class

3 The tpslifonts package

4 texpower General Features



Stephan Lehmke Dynamic Presentations with TEXPower

Structure of the lecture

8

5 texpower’s Color Handling

5.1 Standard colors

5.2 Color sets

5.3 Color Background Options

5.4 Color variants

5.5 Miscellaneous color management commands

5.6 Color Emphasis and Highlighting

5.7 New emphasis and highlighting elements

5.8 Predefined standard colors

5.9 Gradient rules and boxes

5.10 Further development



Stephan Lehmke Dynamic Presentations with TEXPower

Structure of the lecture

9

6 Page backgrounds, Panels

6.1 Structured page backgrounds

6.2 Panel-specific user level commands

6.3 Further development

7 Navigation helpers



Stephan Lehmke Dynamic Presentations with TEXPower

Structure of the lecture

10

Day Two

8 Incremental display

8.1 Basic display effects

8.2 Customising display effects

8.3 Controlling the order of display

8.4 Page transitions and automatic advancing



Stephan Lehmke Dynamic Presentations with TEXPower

Structure of the lecture

11

Day Three

9 Designing a Presentation

9.1 Conference Talks

9.2 Lectures

10 Typical Applications

10.1 Presenting Text

10.2 Presenting Mathematics

10.3 Presenting Graphics

10.4 Designing Custom Display Commands



Stephan Lehmke Dynamic Presentations with TEXPower

1 The TEXPower bundle

12

The first version of TEXPower was written in early 2000

as an alternative to P4 which could be used with

dvips+distiller.

Since then, there have been hot as well as sluggish phases

of development, but all in all, the former experiment has

developed into an independent and quite unique tool for

creating presentations.

Currently, TEXPower is a SourceForge project in alpha

stage, maintained by Hans Fr. Nordhaug — many thanks

to him.



Stephan Lehmke Dynamic Presentations with TEXPower

1 The TEXPower bundle

13

Further thanks go to numerous people who have, in

different stages of development, reported bugs and

provided fixes or extensions.

The project home page is

http://texpower.sourceforge.net/

and features downloads as well as a cvs archive, a mailing

list, user forum, bug and patch trackers etc.

The latest released version is also found at CTAN in

CTAN:macros/latex/exptl/texpower/



Stephan Lehmke Dynamic Presentations with TEXPower

1 The TEXPower bundle

14

As soon as the functionality is complete and backward

compatibility can be granted, and the documentation has

been converted to dtx, there will be a beta version.

The main distinguishing features of TEXPower are:

• independent of the way pdf is created;

• independent of document class;

• implemented entirely in LATEX; (still) independent of

output drivers;

• implement display effects by LATEX programming.



Stephan Lehmke Dynamic Presentations with TEXPower

1 The TEXPower bundle

15

The TEXPower bundle currently contains:

powersem.cls: a simple seminar extension fixing some

bugs and adding some functionality for presentations.

fixseminar.sty: some more fixes to seminar.

tpslifonts.sty: presentation-friendly font

management.

texpower.sty: color management, incremental display,

page backgrounds, panels, navigation aids, . . .



Stephan Lehmke Dynamic Presentations with TEXPower

2 The powersem class

16

Can be used like seminar but adds some (small) bugfixes

and extensions.

New option: display Sets everything up for

incremental display. In particular, seminar is kept from

shoving and squeezing things.

New option: truepagenumbers To get correct page

links if slides are numbered c.s.p.

New parameter: \baseclass . For using a base class

other than article (e.g. report).



Stephan Lehmke Dynamic Presentations with TEXPower

2 The powersem class

17

New options: reportclass , bookclass , KOMA

Shorthands for setting \baseclass.

New option: calcdimensions Calculate slide size from

paper size and margins.

Further development

• Provide more specific classes for talks/lectures.

• Rewrite seminar.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

18

Font selection for slides has to obey the following

constraints:

• prefer Type1 fonts (for Acrobat versions below 6);

• consider low resolution of beamer display;

• consider low contrast when using color emphasis.

This means careful specific font configuration is required.

When using ‘standard’ Type1 fonts like Helvetica, there is

not much flexibility in font configuration (above the

facilities already provided by the mathptmx package).



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

19

As (almost) the complete ‘larger’ family of Computer

Modern is now available in Type1 format, it is possible to

enhance readability by careful choice of design sizes.

General rule: Never use large design sizes in

presentations!

Readability can be much enhanced by restricting the

choice of design sizes to low values.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

20

cmr17: Careful specific font configuration is required.

cmr10: Careful specific font configuration is required.

cmr7: Careful specific font configuration is required.

cmr5: Careful specific font configuration is
required.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

21

The sans serif fonts traditionally used for presentations

are also enhanced by choosing a lower design size.

cmss17: Careful specific font configuration is required.

cmss10: Careful specific font configuration is required.

cmss8: Careful specific font configuration is required.

Additionally, the cm family contains the “Slifonts”

subfamily designed specifically for presentations:

lcmss8: Careful specific font configuration is required.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

22

Furthermore, font configuration should allow ‘smooth

scaling’ for all fonts, to avoid size mismatches.

Math fonts are another extremely important topic for

font configuration, especially because no existing

presentation package gets them even remotely right.

General rule: As math is almost always more important

than the surrounding text, math fonts should be more

readable than text fonts, not less!



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

23

The font family “computer modern math italic” (cmmi) is

particularly problematic, especially when combined with

sans serif text.

Fortunately, lately the sans serif math font family

“computer modern bright” (cmbr) has been made freely

available in Type1 format.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

24

seminar

standard

style

(cmr+cmmi)

ck =
1
2π

∫ 2π

0

f(x)e−ikx dx =
1
2π

r∑
j=1

∫ tj

tj−1

f(x)e−ikx dx

=
−i
2πk

∫ 2π

0

ϕ(x)e−ikx dx =
−iγk

k
.

As for all α, β ∈ C, |αβ| ≤ 1
2

(
|α|2 + |β|2

)
, it holds that

|ck| ≤
1
2

(
1
|k|2

+ |γk|2
)

.

From the convergence of
∞∑

k=1

1
k2 and

∞∑
k=−∞

|γk|2, it follows that

∞∑
k=−∞

|ck| < ∞.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

25

seminar

standard

style

(cmr+cmmi)

with design

size

restriction

ck =
1

2π

Z 2π

0

f(x)e
−ikx

dx =
1

2π

rX
j=1

Z tj

tj−1

f(x)e
−ikx

dx

=
−i

2πk

Z 2π

0

ϕ(x)e
−ikx

dx =
−iγk

k
.

As for all α, β ∈ C, |αβ| ≤ 1
2

“
|α|2 + |β|2

”
, it holds that

|ck| ≤
1

2

 
1

|k|2
+ |γk|2

!
.

From the convergence of
∞P

k=1

1
k2 and

∞P
k=−∞

|γk|2, it follows

that
∞X

k=−∞

|ck| < ∞.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

26

seminar

with

semlcmss

option

(lcmss+cmmi)

ck =
1
2π

∫ 2π

0

f(x)e−ikx dx =
1
2π

r∑
j=1

∫ tj

tj−1

f(x)e−ikx dx

=
−i
2πk

∫ 2π

0

ϕ(x)e−ikx dx =
−iγk

k
.

As for all α, β ∈ C, |αβ| ≤ 1
2

(
|α|2 + |β|2

)
, it holds that

|ck| ≤
1
2

(
1
|k|2

+ |γk|2
)

.

From the convergence of
∞∑

k=1

1
k2 and

∞∑
k=−∞

|γk|2, it follows that

∞∑
k=−∞

|ck| < ∞.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

27

seminar

with

semhelv

option

(phv+cmmi)

ck =
1
2π

∫ 2π

0

f(x)e−ikx dx =
1
2π

r∑
j=1

∫ tj

tj−1

f(x)e−ikx dx

=
−i
2πk

∫ 2π

0

ϕ(x)e−ikx dx =
−iγk

k
.

As for all α, β ∈ C, |αβ| ≤ 1
2

(
|α|2 + |β|2

)
, it holds that

|ck| ≤
1
2

(
1
|k|2

+ |γk|2
)

.

From the convergence of
∞∑

k=1

1
k2 and

∞∑
k=−∞

|γk|2, it follows that

∞∑
k=−∞

|ck| < ∞.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

28

seminar

with helvet

and

mathptmx

packages

(phv+ptm)

ck =
1

2π

∫ 2π

0
f (x)e−ikxdx =

1
2π

r

∑
j=1

∫ t j

t j−1

f (x)e−ikxdx

=
−i
2πk

∫ 2π

0
ϕ(x)e−ikxdx =

−iγk

k
.

As for all α,β ∈ C, |αβ | ≤ 1
2

(
|α|2 + |β |2

)
, it holds that

|ck| ≤
1
2

(
1

|k|2
+ |γk|2

)
.

From the convergence of
∞
∑

k=1

1
k2 and

∞
∑

k=−∞
|γk|2, it follows that

∞

∑
k=−∞

|ck|< ∞.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

29

seminar

with lcmss +

cmbright

ck =
1

2π

Z 2π

0

f (x)e−ikx dx =
1

2π

rX
j=1

Z tj

tj−1

f (x)e−ikx dx

=
−i

2πk

Z 2π

0

ϕ(x)e−ikx dx =
−iγk

k
.

As for all α, β ∈ C, |αβ| ≤ 1
2

`
|α|2 + |β|2

´
, it holds that

|ck | ≤
1

2

„
1

|k|2
+ |γk |2

«
.

From the convergence of
∞P
k=1

1
k2 and

∞P
k=−∞

|γk |2, it follows

that
∞X

k=−∞

|ck | <∞.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

30

foils

standard

style

(cmss+cmmi)

ck =
1

2π

Z 2π

0

f(x)e
−ikx

dx =
1

2π

rX
j=1

Z tj

tj−1

f(x)e
−ikx

dx

=
−i

2πk

Z 2π

0

ϕ(x)e
−ikx

dx =
−iγk

k
.

As for all α, β ∈ C, |αβ| ≤ 1
2

“
|α|2 + |β|2

”
, it holds that

|ck| ≤
1

2

 
1

|k|2
+ |γk|2

!
.

From the convergence of
∞P

k=1

1
k2 and

∞P
k=−∞

|γk|2, it follows that

∞X
k=−∞

|ck| < ∞.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

31

foils

standard

style

(cmss+cmmi)

with design

size

restriction

ck =
1

2π

Z 2π

0

f(x)e
−ikx

dx =
1

2π

rX
j=1

Z tj

tj−1

f(x)e
−ikx

dx

=
−i

2πk

Z 2π

0

ϕ(x)e
−ikx

dx =
−iγk

k
.

As for all α, β ∈ C, |αβ| ≤ 1
2

“
|α|2 + |β|2

”
, it holds that

|ck| ≤
1

2

 
1

|k|2
+ |γk|2

!
.

From the convergence of
∞P

k=1

1
k2 and

∞P
k=−∞

|γk|2, it follows that

∞X
k=−∞

|ck| < ∞.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

32

foils with

cmbright

math

(cmss+cmbr)

ck =
1

2π

Z 2π

0

f (x)e−ikx dx =
1

2π

rX
j=1

Z tj

tj−1
f (x)e−ikx dx

=
−i

2πk

Z 2π

0

ϕ(x)e−ikx dx =
−iγk

k
.

As for all α, β ∈ C, |αβ| ≤ 1
2

“
|α|2 + |β|2

”
, it holds that

|ck | ≤
1

2

„
1

|k|2
+ |γk |2

«
.

From the convergence of
∞P
k=1

1

k2
and

∞P
k=−∞

|γk |2, it follows that

∞X
k=−∞

|ck | <∞.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

33

foils with

lcmss and

cmbright

math

(lcmss+cmbr)

ck =
1

2π

Z 2π

0

f (x)e−ikx dx =
1

2π

rX
j=1

Z tj

tj−1
f (x)e−ikx dx

=
−i

2πk

Z 2π

0

ϕ(x)e−ikx dx =
−iγk

k
.

As for all α, β ∈ C, |αβ| ≤ 1
2

`
|α|2 + |β|2

´
, it holds that

|ck| ≤
1

2

„
1

|k|2
+ |γk|2

«
.

From the convergence of
∞P
k=1

1

k2
and

∞P
k=−∞

|γk|2, it follows that

∞X
k=−∞

|ck| <∞.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

34

prosper

standard

style

math example

ck =
1

2π

Z

2π

0

f(x)e−ikx dx =
1

2π

r
X

j=1

Z tj

tj−1

f(x)e−ikx dx

=
−i

2πk

Z

2π

0

ϕ(x)e−ikx dx =
−iγk

k
.

As for all α, β ∈ C, |αβ| ≤ 1

2

`

|α|2 + |β|2
´

, it holds that

|ck| ≤
1

2

„

1

|k|2
+ |γk|

2

«

.

From the convergence of
∞
P

k=1

1

k2 and
∞
P

k=−∞

|γk|
2, it follows that

∞
X

k=−∞

|ck| < ∞.

– p. 1



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

35

prosper

with

helvet

and

mathptmx

packages

(phv+ptm)

math example

ck =
1

2π

∫ 2π

0
f (x)e−ikx dx =

1
2π

r

∑
j=1

∫ t j

t j−1

f (x)e−ikx dx

=
−i

2πk

∫ 2π

0
ϕ(x)e−ikx dx =

−iγk

k
.

As for all α ,β ∈C, |αβ | ≤ 1
2

(

|α |2 + |β |2
)

, it holds that

|ck| ≤
1
2

(

1

|k|2
+ |γk|

2

)

.

From the convergence of
∞
∑

k=1

1
k2 and

∞
∑

k=−∞
|γk|

2, it follows that

∞

∑
k=−∞

|ck| < ∞.

– p. 1



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

36

prosper

with

lcmss

and

cmbright

math

(lcmss +

cmbr)

math example

ck =
1

2π

Z 2π

0

f (x)e−ikx dx =
1

2π

r
X

j=1

Z tj

tj−1

f (x)e−ikx dx

=
−i

2πk

Z 2π

0

ϕ(x)e−ikx dx =
−iγk

k
.

As for all α, β ∈ C, |αβ| ≤ 1
2

`

|α|2 + |β|2
´

, it holds that

|ck | ≤
1

2

„

1

|k |2
+ |γk |

2

«

.

From the convergence of

∞
P

k=1

1
k2

and

∞
P

k=−∞

|γk |
2
, it follows that

∞
X

k=−∞

|ck | <∞.

– p. 1



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

37

The tpslifonts package tries to get all the font stuff

‘right’.

General features:

• Independent of the rest of the TEXPower bundle.

• Supports a wide range of fonts.

• Selects only fonts freely available in Type1 format.

• Presentation-friendly design size selection.

• ‘smooth scaling’ for all fonts.

• Supports OT1 and T1 font encoding.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

38

Text font options:

cmr Computer Modern Roman text (default: lcmss).

cmfib Computer Modern Roman Fibonacci text.

cmss Computer Modern Sans Serif text.

cmbright Computer Modern Bright text.

concrete Concrete text.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

39

Math font options:

eulermath Euler math (default: cmmi).

cmbrightmath Computer Modern Bright math.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

40

Other options:

scale5pt , scale6pt , scale7pt set maximum

design size (default 8pt).

scaleupmath , scaleuptt scale math and typewriter

fonts to match text font (only useful for lcmss).

textops take math operators (and upper case greek)

from text font.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

41

cmbrightmath,

scaleupmath,

scaleuptt,

textops

ck =
1

2π

Z 2π

0

f (x)e−ikx dx =
1

2π

rX
j=1

Z tj

tj−1

f (x)e−ikx dx

=
−i

2πk

Z 2π

0

ϕ(x)e−ikx dx =
−iγk

k
.

As for all α, β ∈ C, |αβ| ≤ 1
2

`
|α|2 + |β|2

´
, it holds that

|ck | ≤
1

2

„
1

|k|2
+ |γk |2

«
.

From the convergence of
∞P
k=1

1
k2 and

∞P
k=−∞

|γk |2, it follows

that
∞X

k=−∞

|ck | <∞.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

42

eulermath,

scaleupmath,

scaleuptt

ck =
1

2π

∫2π

0

f(x)e−ikx dx =
1

2π

r∑
j=1

∫tj

tj−1

f(x)e−ikx dx

=
−i

2πk

∫2π

0

ϕ(x)e−ikx dx =
−iγk

k
.

As for all α,β ∈ C, |αβ| ≤ 1
2

(
|α|2 + |β|2

)
, it holds that

|ck| ≤ 1

2

(
1

|k|2
+ |γk|2

)
.

From the convergence of
∞∑

k=1

1
k2 and

∞∑
k=−∞ |γk|2, it follows

that ∞∑
k=−∞ |ck| < ∞.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

43

cmr,

scale7pt

ck =
1

2π

Z 2π

0

f(x)e
−ikx

dx =
1

2π

rX
j=1

Z tj

tj−1

f(x)e
−ikx

dx

=
−i

2πk

Z 2π

0

ϕ(x)e
−ikx

dx =
−iγk

k
.

As for all α, β ∈ C, |αβ| ≤ 1
2

“
|α|2 + |β|2

”
, it holds that

|ck| ≤
1

2

 
1

|k|2
+ |γk|2

!
.

From the convergence of
∞P

k=1

1
k2 and

∞P
k=−∞

|γk|2, it follows

that
∞X

k=−∞

|ck| < ∞.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

44

cmfib,

scale7pt

ck =
1

2π

Z 2π

0

f(x)e
−ikx

dx =
1

2π

rX
j=1

Z tj

tj−1

f(x)e
−ikx

dx

=
−i

2πk

Z 2π

0

ϕ(x)e
−ikx

dx =
−iγk

k
.

As for all α, β ∈ C, |αβ| ≤ 1
2

“
|α|2 + |β|2

”
, it holds that

|ck| ≤
1

2

 
1

|k|2
+ |γk|2

!
.

From the convergence of
∞P

k=1

1
k2 and

∞P
k=−∞

|γk|2, it

follows that
∞X

k=−∞

|ck| < ∞.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

45

cmfib,

scale7pt,

scaleupmath,

scaleuptt,

\boldmath

ck =
1

2π

Z 2π

0

f(x)e
−ikx

dx =
1

2π

rX
j=1

Z tj

tj−1

f(x)e
−ikx

dx

=
−i

2πk

Z 2π

0

ϕ(x)e
−ikx

dx =
−iγk

k
.

As for all α, β ∈ C, |αβ| ≤ 1
2

“
|α|2 + |β|2

”
, it holds

that

|ck| ≤
1

2

 
1

|k|2
+ |γk|2

!
.

From the convergence of
∞P

k=1

1
k2 and

∞P
k=−∞

|γk|2, it

follows that
∞X

k=−∞

|ck| < ∞.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

46

cmbright,

cmbrightmath

ck =
1

2π

Z 2π

0

f (x)e−ikx dx =
1

2π

rX
j=1

Z tj

tj−1

f (x)e−ikx dx

=
−i
2πk

Z 2π

0

ϕ(x)e−ikx dx =
−iγk
k
.

As for all α, β ∈ C, |αβ| ≤ 1
2

“
|α|2 + |β|2

”
, it holds that

|ck | ≤
1

2

„
1

|k|2
+ |γk |2

«
.

From the convergence of
∞P
k=1

1
k2
and

∞P
k=−∞

|γk |2, it follows that

∞X
k=−∞

|ck | <∞.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

47

concrete,

eulermath

ck =
1

2π

∫2π

0
f(x)e−ikx dx =

1
2π

r∑
j=1

∫tj

tj−1

f(x)e−ikx dx

=
−i

2πk

∫2π

0
ϕ(x)e−ikx dx =

−iγk

k
.

As for all α,β ∈ C, |αβ| ≤ 1
2

(
|α|2 + |β|2

)
, it holds that

|ck| ≤ 1
2

(
1

|k|2
+ |γk|2

)
.

From the convergence of
∞∑

k=1

1
k2 and

∞∑
k=−∞ |γk|2, it follows that

∞∑
k=−∞ |ck| < ∞.



Stephan Lehmke Dynamic Presentations with TEXPower

3 The tpslifonts package

48

Further development

• Smarter choice of design sizes.

• Allow bitmap fonts (optional).

• Make dedicated ‘slifonts’ versions of math and

typewriter fonts to avoid scaling.

• Make dedicated versions of cmr and cmmi (darker,

different geometry) for slides.



Stephan Lehmke Dynamic Presentations with TEXPower

4 texpower General Features

49

The package texpower is completely independent of the

document class used and the method of pdf creation.

General Options:

option: display . Enable ‘dynamic’ features. If not set,

it is assumed that the document is to be printed, and

all commands for dynamic presentations have no

effect.

option: printout (default) . No ‘dynamic’ features.

option: verbose . Output some administrative info.



Stephan Lehmke Dynamic Presentations with TEXPower

4 texpower General Features

50

option: fixcolorstack switches on color stack

correction. Use it if you experience strange color

switches in your document.



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

51

If a color-related option (see below) is given to the

texpower package, TEXPower installs an extensive color

management scheme on top of the kernel of the color

package.

5.1 Standard colors

TEXPower maintains a list of standard colors which are

recognized and handled by TEXPower’s color

management. Some commands like \dimcolors affect all

standard colors.



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

52

There are some predefined colors which are in this list

from the outset.

\defineTPcolor{〈name〉}{〈model〉}{〈def〉} acts like

\definecolor from the color package, but the color

〈name〉 is also added to the list of standard colors.

\addTPcolor{〈name〉} adds an existing color to the list

of standard colors.



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

53

5.2 Color sets

Every standard color may be defined in one or several

color sets. There are two fundamentally different types

of color set:

The current color set. This contains the current

definition of every standard color which is actually

used at the moment. Every standard color should be

defined at least in the current color set. The current

color set is not distinguished by a special name.



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

54

Named color sets. These are ‘containers’ for a full set

of color definitions (for the standard colors) which

can be activated by respective commands.

Color definitions in a named color set are not

currently available, they have to be made available by

activating the named color set.

There are four predefined color sets named whitebg,

lightbg, darkbg, blackbg.



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

55

There are the following commands for manipulating color

sets:

\usecolorset{〈name〉} Make the color set named

〈name〉 the current color set. All standard colors in

the current color set which are also in color set

〈name〉 are overwritten.

\dumpcolorset{〈name〉} Copy the definitions of all

standard colors in the current color set into color set

named 〈name〉.



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

56

5.3 Color Background Options

For activating the predefined color sets, there are

shorthands \whitebackground, \lightbackground,

\darkbackground, \blackbackground which execute

\usecolorset and additionally set the background color

to its current value.

There are package options to set the background color

which automatically execute the respective command.



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

57

option: whitebackground (default) Set standard

colors to match a white background color.

option: lightbackground Set standard colors to

match a light (but not white) background color.

option: darkbackground Set standard colors to match

a dark (but not black) background color.

option: blackbackground Set standard colors to

match a black background color.



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

58

5.4 Color variants

In addition to color sets, TEXPower implements a concept

of color variant. Currently, every color has three variants:

normal, dimmed, and enhanced. The normal variant is

what is usually seen, text written in the dimmed variant

appears “faded into the background” and text written in

the enhanced variant appears to “stick out”.



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

59

It is possible to predefine a designated color for a color

variant.

For color 〈color〉 the designated name of the dimmed

variant is d〈color〉, the designated name of the

enhanced variant is e〈color〉.

If a color by that name exists at the time the variant is

switched to, then variant switching is executed by

replacing color 〈color〉 with the designated color.



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

60

If a color by the designated name does not exist at the

time a color variant is switched to, then variant switching

is executed by automatically calculating the color variant

from the original color.

The dimmed variant is calculated by interpolating

between pagecolor and the color to be dimmed, using

the \colorbetween command.

There is a command \dimlevel which contains the

parameter 〈weight〉 given to \colorbetween (default:

0.7).



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

61

The enhanced variant is calculated by extrapolating the

color to be enhanced (relative to pagecolor).

There is a command \enhancelevel which gives the

extent of the extrapolation (default: 0.5).



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

62

The following commands switch color variants:

\dimcolor[〈level〉]{〈color〉} switches color 〈color〉
to the dimmed variant. If given, 〈level〉 replaces the

value of \dimlevel in automatic calculation of the

dimmed variant.

\dimcolors[〈level〉] switches all standard colors to

the dimmed variant.



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

63

\enhancecolor[〈level〉]{〈color〉} switches color

〈color〉 to the enhanced variant.

\enhancecolors[〈level〉] switches all standard colors

to the enhanceed variant.



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

64

5.5 Miscellaneous color management commands

\replacecolor[〈tset〉]{〈tcolor〉}[〈sset〉]{〈scolor〉}
makes 〈tcolor〉 have the same definition as 〈scolor〉
(if 〈scolor〉 is defined at all), where 〈tcolor〉 and

〈scolor〉 are color names as given in the first

argument of \definecolor. If (one of) 〈tset〉 and

〈sset〉 are given, the respective color is taken from

the respective color set, otherwise from the current

color set.



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

65

\colorbetween[〈weight〉]{〈src1〉}{〈src2〉}{〈target〉}
calculates a ‘weighted average’ between two colors.

〈src1〉 and 〈src2〉 are the names of the two colors.

〈weight〉 (default: 0.5) is a fixed-point number

between 0 and 1 giving the ‘weight’ for the

interpolation between 〈src1〉 and 〈src2〉. 〈target〉
is the name to be given to the resulting mixed color.



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

66

\vanishcolors[〈color〉] is similar to the color variant

command \dimcolors, but instead of dimming

colors, all standard colors are replaced by a single

color given by the new command \vanishcolor

(default: pagecolor).



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

67

5.6 Color Emphasis and Highlighting

texpower offers some support for text emphasis and

highlighting with colors (instead of, say, font changes).

These features are enabled by the following options:

option: coloremph Make \em and \emph switch colors

instead of fonts.

option: colormath Color all mathematical formulae.

option: colorhighlight Make new highlighting

commands defined by texpower use colors.



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

68

5.7 New emphasis and highlighting elements

\origmath works exactly like \ensuremath but doesn’t

color its argument.

\underl Additional emphasis command. Defaults to

bold face if the colorhighlight option is not given.

\concept Additional emphasis command. Also defaults

to bold face if the colorhighlight option is not

given.



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

69

\inactive Additional emphasis command, this time for

‘de-emphasising’. There is no sensible default if the

colorhighlight option is not given.

\present Highlighting command which puts its

argument into a box with colored background .

Defaults to an \fbox if the colorhighlight option

is not given.



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

70

5.8 Predefined standard colors

color: pagecolor Background color of the page.

color: textcolor Color of normal text.

color: emcolor Color used for emphasis if the

coloremph option is set.

color: altemcolor Color used for double emphasis if

the coloremph option is set.



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

71

color: mathcolor Color used for math a2 + b2 = c2 if

the colormath option is set.

color: codecolor Color used by the \code command if

the colorhighlight option is set.

color: underlcolor Color used by the \underl

command if the colorhighlight option is set.

color: conceptcolor Color used by the \concept

command if the colorhighlight option is set.



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

72

color: inactivecolor Color used by the \inactive

command if the colorhighlight option is set.

color: presentcolor Color used as background color

by the \present command if the colorhighlight

option is set.

color: highlightcolor Color used as background

color by the \highlightboxed and \highlighttext

commands if the colorhighlight option is set.



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

73

5.9 Gradient rules and boxes

\vgradrule[〈str〉][〈mod1〉]{〈col1〉}[〈mod2〉]{〈col2〉}[〈r〉]{〈w〉}{〈h〉}

creates a rule-like object consisting of a vertical color

gradient composed of horizontal stripes. The

topmost stripe has color 〈col1〉, the bottommost

stripe has color 〈col2〉. Inbetween, color changes

gradually from top to bottom. The colors are

specified by the 〈mod1〉/〈col1〉 and 〈mod2〉/〈col2〉
pairs exactly as for the \color command.

[〈r〉]{〈w〉}{〈h〉} are the usual \rule arguments.



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

74

The optional argument 〈str〉, if given, should contain

a number specifying the number of stripes.

\rulefirstgradprogression should expand to an

integer. This value (default 1) controls the ‘order’ of

progression from 〈col1〉 to 〈col2〉. The default value

1 means linear progression. 2 means quadratic

progression, etc. −2 means quadratic progression

“from bottom to top”, etc.

\vgradrule{red}{blue}{10em}{2ex} gives

.



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

75

\hgradrule[〈str〉][〈mod1〉]{〈col1〉}[〈mod2〉]{〈col2〉}[〈r〉]{〈w〉}{〈h〉} is

equivalent with \vgradrule, but the gradient is

composed from vertical stripes progressing

horizontally.

\hgradrule{red}{blue}{10em}{2ex} gives

.



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

76

\dblvgradrule[〈mid〉][〈str〉][〈m1〉]{〈c1〉}[〈m2〉]{〈c2〉}[〈m3〉]{〈c3〉}[〈r〉]{〈w〉}{〈h〉}

gives a ‘vertically progressing’ double-gradient rule

which has a start, middle, and end color.

〈mid〉 should be a fraction between 0 and 1 giving the

relative position at which the ‘middle’ color is located.

\dblvgradrule{red}{blue}{green}[-1ex]{10em}{3ex}

gives .



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

77

\dblhgradrule[〈mid〉][〈str〉][〈m1〉]{〈c1〉}[〈m2〉]{〈c2〉}[〈m3〉]{〈c3〉}[〈r〉]{〈w〉}{〈h〉}

is equivalent with \dblvgradrule, but the gradient

is composed from vertical stripes progressing

horizontally.

\dblhgradrule[.3][100]{red}{blue}{green}[-1ex]{10em}{3ex}

gives .



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

78

\vgradbox[〈str〉][〈mod1〉]{〈col1〉}[〈mod2〉]{〈col2〉}{〈content〉}

creates an mbox containing 〈content〉, which has a

background made up of a vertical color gradient. In

fact, the background exceeds the extent of

〈content〉 by the value of \fboxsep on every side,

just like the \colorbox command from the color

package. The gradient background is constructed

using the \vgradrule command.

\vgradbox{textcolor}{conceptcolor}{\textcolor{presentcolor}{foo}}

gives foo .



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

79

\hgradbox[〈str〉][〈mod1〉]{〈col1〉}[〈mod2〉]{〈col2〉}{〈content〉}

\dblvgradbox[〈mid〉][〈str〉][〈m1〉]{〈c1〉}[〈m2〉]{〈c2〉}[〈m3〉]{〈c3〉}{〈content〉}

\dblhgradbox[〈mid〉][〈str〉][〈m1〉]{〈c1〉}[〈m2〉]{〈c2〉}[〈m3〉]{〈c3〉}{〈content〉}

all create boxes the backgrounds of which are made

of the respective gradient rules.

\dblhgradbox[][20][rgb]{.8,1,1}[rgb]{1,.8,1}[rgb]{1,1,.6}{jabberwocky}

gives jabberwocky .



Stephan Lehmke Dynamic Presentations with TEXPower

5 texpower’s Color Handling

80

5.10 Further development

• Use ‘native’ color gradient facilities of the target

format (ps, pdf) if available.

• Add facilities to aid in creating presentations which are

friendly to color blind people.

• Add facilities for creating several color variants of a

presentation simultaneously and swithching between

them ‘on the fly’ based on viewing conditions.

• Make an empiric study on the readability of color

combinations.



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

81

6.1 Structured page backgrounds

\backgroundstyle[〈options〉]{〈style〉} is the

central command for structured page backgrounds. It

works like \pagestyle and other commands of this type.

This means 〈style〉 is a symbolic name specifying the

general method by which the page background is

constructed.

The detailed construction is influenced by parameters

which can be set in 〈options〉, which should be a

comma-separated list of 〈key〉=〈value〉 pairs.



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

82

〈style〉 may have one of the following values:

Style: none No background.

Options: none.

Style: plain Plain background. In addition to

background style none, the background style plain

does produce panel backgrounds.

Options: hpanels, autopanels, toppanelcolor, bottompanelcolor,

leftpanelcolor, rightpanelcolor, toppanelcolordef,

bottompanelcolordef, leftpanelcolordef, rightpanelcolordef,

toppanelheight, bottompanelheight, leftpanelwidth,

rightpanelwidth.



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

83

Style: vgradient Vertical gradient. The page

background is constructed using the \vgradrule

command. If there are panels, the gradient rule fills

the rectangular space left between the specified

panels.

Options: stripes, firstgradprogression, startcolor,

startcolordef, endcolor, endcolordef in addition to the parameters

used for style plain.

Style: hgradient Horizontal gradient. The page

background is constructed using the \hgradrule

command.



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

84

Style: doublevgradient Double vertical gradient. The

page background is constructed using the

\dblvgradrule command.

Options: gradmidpoint, secondgradprogression, midcolor,

midcolordef in addition to the parameters used for style vgradient

(and plain).

Style: doublehgradient Double horizontal gradient.

The page background is constructed using the

\dblhgradrule command.



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

85

Now, a list of all parameters and their meaning. In the

following,

〈n〉: (calc expression for a) nonnegative integer

〈i〉: (calc expression for an) integer

〈r〉: fixed-point number

〈l〉: (calc expression for a) length

〈c〉: name of a defined color

〈cm〉: valid color model name

〈cd〉: valid color definition wrt a given 〈cm〉 parameter

〈t〉: ‘truth value’ in the sense of the ifthen package.



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

86

Option: stripes=〈n〉 Set the 〈stripes〉 parameter of

gradient rules to 〈n〉.
Default: \bgndstripes.

Used by: vgradient, hgradient, doublevgradient,

doublehgradient.

Option: gradmidpoint=〈r〉 Set the 〈midpoint〉
parameter of double gradient rules to 〈r〉.
Default: \bgndgradmidpoint

Used by: doublevgradient, doublehgradient



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

87

Option: firstgradprogression=〈i〉 Set the first

gradient progression of gradient rules to 〈i〉.
Default: \bgndfirstgradprogression

Used by: vgradient, hgradient, doublevgradient,

doublehgradient

Option: secondgradprogression=〈i〉 Set the second

gradient progression of double gradient rules to 〈i〉.
Default: \bgndsecondgradprogression

Used by: doublevgradient, doublehgradient



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

88

Option: startcolor=〈c〉 Set the 〈startcolor〉
parameter of gradient rules to 〈c〉.
Default: If neither startcolor nor startcolordef is given, the color

bgndstartcolor is used as startcolor.

Used by: vgradient, hgradient, doublevgradient,

doublehgradient

Overwrites: startcolordef



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

89

Option: startcolordef={〈cm〉}{〈cd〉} Set the

〈startcolor〉 parameter of gradient rules to color

foo, which is obtained by

\definecolor{foo}{〈cm〉}{〈cd〉}. Note that the

two pairs of curly braces are mandatory.
Default: If neither startcolor nor startcolordef is given, the color

bgndstartcolor is used as startcolor.

Used by: vgradient, hgradient, doublevgradient,

doublehgradient

Overwrites: startcolor



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

90

Option: endcolor=〈c〉 Set the 〈endcolor〉 parameter

of gradient rules to 〈c〉.
Default: If neither endcolor nor endcolordef is given, the color

bgndendcolor is used as endcolor.

Used by: vgradient, hgradient, doublevgradient,

doublehgradient

Overwrites: endcolordef



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

91

Option: endcolordef={〈cm〉}{〈cd〉} Set the

〈endcolor〉 parameter of gradient rules to color foo,

which is obtained by

\definecolor{foo}{〈cm〉}{〈cd〉}. Note that the

two pairs of curly braces are mandatory.
Default: If neither endcolor nor endcolordef is given, the color

bgndendcolor is used as endcolor.

Used by: vgradient, hgradient, doublevgradient,

doublehgradient

Overwrites: endcolor



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

92

Option: midcolor=〈c〉 Set the 〈midcolor〉 parameter

of double gradient rules to 〈c〉.
Default: If neither midcolor nor midcolordef is given, the color

bgndmidcolor is used as midcolor.

Used by: doublevgradient, doublehgradient

Overwrites: midcolordef



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

93

Option: midcolordef={〈cm〉}{〈cd〉} Set the

〈midcolor〉 parameter of double gradient rules to

color foo, which is obtained by

\definecolor{foo}{〈cm〉}{〈cd〉}. Note that the

two pairs of curly braces are mandatory.
Default: If neither midcolor nor midcolordef is given, the color

bgndmidcolor is used as midcolor.

Used by: doublevgradient, doublehgradient

Overwrites: midcolor



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

94

Option: hpanels=〈t〉 Specifies the ‘direction’ of panels

produced. hpanels=true means the top and bottom

panel span the full width of the screen. In the space

left in the middle, the left panel, the background

itself, and the right panel are displayed.

hpanels=false means the left and right panel span

the full height of the screen.
Default: hpanels=true is the default for plain, hgradient and

doublehgradient. hpanels=false is the default for vgradient and

doublevgradient.

Used by: plain, vgradient, hgradient, doublevgradient,

doublehgradient



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

95

Option: autopanels=〈t〉 Specifies whether the default

values of the parameters toppanelheight,

bottompanelheight, leftpanelwidth,

rightpanelwidth should be calculated automatically

from the contents of declared panels, or if the current

panel dimensions of declared panels are to be used as

defaults.
Default: true.

Used by: plain, vgradient, hgradient, doublevgradient,

doublehgradient



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

96

Option: 〈pos〉panelheight=〈l〉 Set the height of

space left for the top/bottom panel to 〈l〉. The

width is calculated automatically, depending on the

setting of the hpanels parameter.
Default: If a panel has been defined using \DeclarePanel, then if

autopanels=true, the height is calculated from the contents of the

panel. \toppanelheight or \bottompanelheight is overwritten with

the result. If autopanels=false, the setting of \toppanelheight or

\bottompanelheight is taken as the default. If a panel has not been

declared, \bgndtoppanelheight or \bgndbottompanelheight is used

as default.

Used by: plain, vgradient, hgradient, doublevgradient,

doublehgradient



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

97

Option: 〈pos〉panelwidth=〈l〉 Set the width of space

left for the left/right panel to 〈l〉. The height is

calculated automatically, depending on the setting of

the hpanels parameter.
Default: If a panel has been defined using \DeclarePanel, then if

autopanels=true, the height is calculated from the contents of the

panel. \leftpanelwidth or \rightpanelwidth is overwritten with the

result. If autopanels=false, the setting of \leftpanelwidth or

\rightpanelwidth is taken as default. If a panel has not been declared,

\bgndleftpanelwidth or \bgndrightpanelwidth is used as default.

Used by: plain, vgradient, hgradient, doublevgradient,

doublehgradient



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

98

Option: 〈pos〉panelcolor=〈c〉 Set the background

color of the top/bottom/left/right panel to 〈c〉.
Default: The standard colors toppanelcolor, bottompanelcolor,

leftpanelcolor, rightpanelcolor are used as defaults.

Used by: plain, vgradient, hgradient, doublevgradient,

doublehgradient

Overwrites: toppanelcolordef / bottompanelcolordef /

leftpanelcolordef / rightpanelcolordef



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

99

Option: 〈pos〉panelcolordef={〈cm〉}{〈cd〉} Set the

background color of the top/bottom/left/right

panel to color foo, which is obtained by

\definecolor{foo}{〈cm〉}{〈cd〉}. Note that the

two pairs of curly braces are mandatory.
Used by: plain, vgradient, hgradient, doublevgradient,

doublehgradient

Overwrites: toppanelcolor bottompanelcolor leftpanelcolor

rightpanelcolor



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

100

6.2 Panel-specific user level commands

\DeclarePanel[〈name〉]{〈pos〉}{〈contents〉} declares

the contents 〈contents〉 of the panel at position 〈pos〉.
Afterwards, on every page the panel contents are set in a

parbox of dimensions and position specified by

\〈pos〉panelwidth, \〈pos〉panelheight, \panelmargin
and \〈pos〉panelshift for top and bottom panels and

\〈pos〉panelraise for left and right panels.



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

101

The parbox is constructed anew on every page, so all

changes influencing panel contents or parameters (like a

\thepage in the panel contents) are respected.

The panel contents are set in color

〈pos〉paneltextcolor. There is another standard color

〈pos〉panelcolor, which is however not activated by

\DeclarePanel but by selecting an appropriate

background style.

Note that \backgroundstyle must be called after the

panel declaration.



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

102

Pages are constructed as follows: first the page

background, then the panels, and then the page contents.

Hence, panels overwrite the background and the page

contents overwrite the panels.

The user is supposed to make sure themselves that there

is enough space left on the page for the panels (document

class specific settings).

The panel declaration is global. A panel can be

‘undeclared’ by using \DeclarePanel{〈pos〉}{}.



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

103

If the optional argument 〈name〉 is given, the panel

contents and (calculated) size will also be stored under the

given name, to be restored later with \restorepanels.

This is nice for switching between different sets of panels.



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

104

For an example look at the files simplepanel.tex and

panelexample.tex in the doc directory. A simple

example follows:

\DeclarePanel{left}{%

\textsf{Your Name}

\vfill

\button{\Acrobatmenu{PrevPage}}{Back}

\button{\Acrobatmenu{NextPage}}{Next} }



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

105

There is a starred version which will (try to) automatically

calculate the ‘flexible’ dimension of each panel. For top

and bottom panels this is the height, for left and right

panels this is the width. Make sure the panel contents are

‘valid’ at the time \DeclarePanel* is called so the

calculation can be carried out in a meaningful way.

While the automatic calculation of the height of top and

bottom panels is trivial (using \settoheight), there is a

sophisticated procedure for calculating a ‘good’ width for

the parbox containing the panel.



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

106

The procedure is not perfect, but if no ‘indigestible’

things crop up (which can result from rules or color

changes appearing in the wrong place (vertical mode)), it

will reliably make sure that no largish objects like logos or

buttons end up sticking out of the panel.



Stephan Lehmke Dynamic Presentations with TEXPower

6 Page backgrounds, Panels

107

6.3 Further development

• Add more background styles (pictures or tiles).

• Add background styles to panels.

• Define a user interface for easy definition of

self-designed ‘fancy’ backgrounds.

• Allow to include prosper styles.

• Add an option to scale (instead of overlay) the page to

fit the content area left by the panels.

• Allow for more flexible panel layout and placement.



Stephan Lehmke Dynamic Presentations with TEXPower

7 Navigation helpers

108

\button{〈navcommand〉}{〈text〉} creates a button

labelled 〈text〉 which executes 〈navcommand〉 when

pressed.

〈navcommand〉 can be for instance

\Acrobatmenu{〈command〉} or \hyperlink{〈target〉}
(note that 〈navcommand〉 should take one (more)

argument specifying the sensitive area which is provided

by \button).



Stephan Lehmke Dynamic Presentations with TEXPower

7 Navigation helpers

109

\button takes four optional arguments (left out above):

〈width〉, 〈height〉, 〈depth〉 and 〈alignment〉 in that

order. If given, 〈width〉, 〈height〉, 〈depth〉 give the

dimensions of the framed area comprising the button

(excluding the shadow, but including the frame).

Default are the ‘real’ width, height and depth,

respectively, of 〈text〉, plus allowance for the frame.

If given, the optional parameter 〈alignment〉 (one of

l,c,r) gives the alignment of 〈text〉 inside the button

box (makes sense only if 〈width〉 is given).



Stephan Lehmke Dynamic Presentations with TEXPower

7 Navigation helpers

110

The button appearence is defined by some configurable

button parameters:

\buttonsep Space between button label and border.

(Default: \fboxsep)

\buttonrule Width of button frame. (Default: 0pt)

\buttonshadowhshift Horizontal displacement of

button shadow. (Default: 0.3\fboxsep)

\buttonshadowvshift Vertical displacement of button

shadow. (Default: 0.3\fboxsep)



Stephan Lehmke Dynamic Presentations with TEXPower

7 Navigation helpers

111

A list of predefined buttons follows:

\backpagebutton[〈width〉] Last subpage of previous

page.

\backstepbutton[〈width〉] Previous step.

\gobackbutton[〈width〉] ‘Undo action’ (go back to

whatever was before last action).



Stephan Lehmke Dynamic Presentations with TEXPower

7 Navigation helpers

112

\nextstepbutton[〈width〉] Next step.

\nextpagebutton[〈width〉] First subpage of next

page.

\nextfullpagebutton[〈width〉] Last subpage of next

page.

\fullscreenbutton[〈width〉] Toggle fullscreen mode.



Stephan Lehmke Dynamic Presentations with TEXPower

7 Navigation helpers

113

Further development

• Add more navigation buttons (and a more sensible

naming scheme).

• More flexible labelling of standard buttons.

• Add means for inline bookmarks (parts of the table of

contents displayed in a panel as a ‘jump table’).

• Sensible handling of thumbnails.

• Provide progress indicators which can also be used to

jump to certain parts of the presentation.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

114

8.1 Basic display effects

8.1.1 The \pause command

\pause ships out the current page, starts a new page and

copies whatever was on the current page onto the new

page, where typesetting is resumed.

This will create the effect of a pause in the presentation.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

115

Things to pay attention to

1. \pause should appear in vertical mode only, i. e.

between paragraphs or at places where ending the

current paragraph doesn’t hurt.

2. This means \pause is forbidden in all boxed material

(including tabular), headers/footers, and floats.

3. \pause shouldn’t appear either in environments

which have to be closed to work properly, like

picture, tabbing, and (unfortunately) environments

for aligned math formulas.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

116

4. \pause does work in all environments which mainly

influence paragraph formatting, like center, quote or

all list environments.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

117

8.1.2 The \stepwise command

\stepwise{〈contents〉} is a command for displaying

some part of a LATEX document (which is contained in

〈contents〉) ‘step by step’.

If 〈contents〉 contains one or more constructs of the

form \step{〈stepcontents〉} , the following happens:

1. The current contents of the page are saved (as with

\pause).



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

118

2. As many pages as there are \step commands in

〈contents〉 are produced.

Every page starts with what was on the current page

when \stepwise started.

The first page also contains everything in 〈contents〉
which is not in 〈stepcontents〉 for any \step

command.

The second page additionally contains the

〈stepcontents〉 for the first \step command, and

so on, until all 〈stepcontents〉 are displayed.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

119

3. When all 〈stepcontents〉 are displayed, \stepwise

ends and typesetting is resumed (still on the current

page).

This will create the effect that the \step commands are

executed ‘step by step’.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

120

Things to pay attention to

1. \stepwise should appear in vertical mode only, i. e.

between paragraphs, just like \pause.

2. Don’t put \pause or nested occurrences of

\stepwise into 〈contents〉.

3. Structures where \pause does not work (like

tabular or aligned equations) can go completely into

〈contents〉, where \step can be used freely.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

121

4. \step can go in 〈stepcontents〉. The order of

execution of \step commands is the order in which

they appear in 〈contents〉, independent of nesting.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

122

\begin{itemize}

\item one\pause

\item two\pause

\item three

\end{itemize}

gives

• one

• two

• three



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

123

\stepwise

{%

one,

\step{two, }%

\step{three.}%

}

gives

one, two, three.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

124

8.2 Customising display effects

8.2.1 \boxedsteps and \nonboxedsteps

By default, 〈stepcontents〉 belonging to a \step which

is not yet ‘active’ are ignored altogether. This makes it

possible to include e. g. tabulators & or line breaks into

〈stepcontents〉 without breaking anything.

Sometimes, the desired behaviour of a \step which is not

yet ‘active’ is to create an appropriate amount of blank

space where 〈stepcontents〉 can go as soon as it is

activated.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

125

The simplest and most robust way of doing this is to

create an empty box (aka \phantom) with the same

dimensions as the text to be hidden.

This behaviour is toggled by the following commands.

\boxedsteps makes \step create a blank box the size

of 〈stepcontents〉 when inactive and put

〈stepcontents〉 into a box when active.

\nonboxedsteps activates the default behaviour.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

126

\stepwise

{\begin{tabular}{ll}

\hline 1 & one%

\step{\\ 2 & two}%

\step{\\ 3 & three}\\

\hline

\end{tabular}

\par\boxedsteps

\begin{tabular}{ll}

\hline 1 & one\\

\step{2}&\step{two}\\

\step{3}&\step{three}\\

\hline

\end{tabular}}

gives

1 one

2 two

3 three

1 one

2 two

3 three



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

127

8.2.2 Custom versions of \stepwise

Sometimes, it might happen that vertical spacing is

different on every page of a sequence generated by

\stepwise, making lines ‘wobble’.

This is caused by interactions between different ways

vertical spacing is added to the page. Hopefully, problems

caused this way can be reduced until the first beta release.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

128

There are two custom versions of \stepwise which

should produce better vertical spacing.

\liststepwise{〈contents〉} works exactly like

\stepwise, but adds an ‘invisible rule’ before

〈contents〉. Use for list environments and aligned

equations.

\parstepwise{〈contents〉} works like

\liststepwise, but \boxedsteps is turned on by

default. Use for texts where \steps are to be filled

into blank spaces.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

129

8.2.3 Starred versions of \stepwise commands

Usually, the first page of a sequence produced contains

only material which is not part of any 〈stepcontents〉.
The first 〈stepcontents〉 are displayed on the second

page of the sequence.

For special effects, it might be desirable to have the first

〈stepcontents〉 active even on the first page of the

sequence.

All variants of \stepwise have a starred version (e. g.

\stepwise*) which does exactly that.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

130

8.2.4 The optional argument of \stepwise

Every variant of \stepwise takes an optional argument,

like this: \stepwise[〈settings〉]{〈contents〉} .

〈settings〉 will be placed right before the internal loop

which produces the sequence of pages. It can contain

settings of parameters which modify the behaviour of

\stepwise or \step. 〈settings〉 is placed inside a group

so all changes are local to this call of \stepwise.

Some internal macros and counters which can be adjusted

are explained in the following.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

131

8.2.5 Customizing the way 〈stepcontents〉 is

diplayed

Internally, there are three macros (taking one argument

each) which control how 〈stepcontents〉 is displayed:

\displaystepcontents, \hidestepcontents, and

\activatestep. Virtually, every

\step{〈stepcontents〉} is replaced by

\hidestepcontents{〈stepcontents〉}
when this step is not yet active.

\displaystepcontents{\activatestep{〈stepcontents〉}}



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

132

when this step is activated for the first time.

\displaystepcontents{〈stepcontents〉}
when this step has been activated before.

By redefining these macros, the behaviour of \step is

changed accordingly. You can redefine them inside

〈contents〉 to provide a change affecting one \step only,

or in the optional argument of \stepwise to provide a

change for all \steps inside 〈contents〉.

\activatestep is set to \displayidentical by default,

the default settings of \hidestepcontents and



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

133

\displaystepcontents depend on whether

\boxedsteps or \nonboxedsteps (default) is used.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

134

texpower offers nine standard definitions.

For interpreting \displaystepcontents:

\displayidentical Simply expands to its argument.

The same as LATEXs \@ident. Used by

\nonboxedsteps (default).

\displayboxed Expands to an \mbox containing its

argument. Used by \boxedsteps.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

135

For interpreting \hidestepcontents:

\hideignore Expands to nothing. Used by

\nonboxedsteps (default).

\hidephantom Expands to a \phantom containing its

argument. Used by \boxedsteps.

\hidevanish In a colored document, makes its

argument ‘vanish’ by setting all colors to

\vanishcolor (defaults to pagecolor). This will

give weird results with structured backgrounds.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

136

s \hidetext Produces blank space of the same

dimensions as the space that would be occupied if its

argument would be typeset in the current paragraph.

Respects automatic hyphenation and line breaks.

This command needs the soul package to work,

which is not loaded by texpower itself. Consult the

documentation of soul concerning restrictions on

commands implemented using soul.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

137

\hidedimmed In a colored document, displays its

argument with dimmed colors. Note that this doesn’t

make the argument completely invisible.

For monochrome documents, there is no useful

interpretation for this command, so it is disabled.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

138

For interpreting \activatestep:

\highlightboxed If the colorhighlight option is set,

expands to a box with colored background containing

its argument. Otherwise, expands to an \fbox

containing its argument. The resulting box has the

same dimensions as the argument (background may

overlap surrounding text).

There is a new length register \highlightboxsep

which acts like \fboxsep for the resulting box and

defaults to 0.5\fboxsep.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

139

s \highlighttext If the colorhighlight option is set,

puts its argument on colored background. Otherwise,

underlines its argument. The resulting text has the

same dimensions as the argument (background may

overlap surrounding text).

\highlightboxsep is used to determine the extent

of the coloured box(es) used as background.

This command needs the soul package to work

(compare the description of \hidetext).



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

140

\highlightenhanced In a colored document, displays

its argument with enhanced colors.

For monochrome documents, there is no useful

interpretation for this command, so it is disabled.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

141

8.2.6 Variants of \step

There are a couple of custom versions of \step which

make it easier to achieve special effects needed frequently.

\bstep Like \step, but is always boxed.

\bstep{〈stepcontents〉} is implemented in principle

as {\boxedsteps\step{〈stepcontents〉}}.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

142

\switch{〈ifinactive〉}{〈ifactive〉} is a variant of

\step which, instead of making its argument appear,

switches between 〈ifinactive〉 and 〈ifactive〉
when activated.

In fact, \step{〈stepcontents〉} is in principle

implemented by

\switch{\hidestepcontents{〈stepcontents〉}}
{\displaystepcontents{〈stepcontents〉}}

Beware of problems when 〈ifinactive〉 and

〈ifactive〉 have different dimensions.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

143

\dstep A variant of \step which takes no argument,

but simply switches colors to ‘dimmed’ if not active.

\vstep A variant of \step which takes no argument,

but simply switches all colors to \vanishcolor

(defaults to pagecolor) if not active.

\steponce Like \step, but goes inactive again in the

subsequent step.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

144

\multistep is a shorthand macro for executing several

steps successively. The syntax is

\multistep*[〈activatefirst〉]{〈n〉}{〈stepcontents〉}

where 〈n〉 is the number of steps.

Only one instance of 〈stepcontents〉 is displayed at

a time. Inside 〈stepcontents〉, a counter substep

can be evaluated which tells the number of the

current instance.

In the starred form the last instance of

〈stepcontents〉 stays visible.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

145

\movie works like \multistep, but between \steps,

pages are advanced automatically every 〈dur〉
seconds. The syntax is

\movie{〈n〉}{〈dur〉}[〈stop〉]{〈stepcontents〉}
where 〈n〉 is the number of steps. The additional

optional argument 〈stop〉 gives the code (default:

\stopAdvancing) which stops the animation.

(\movie accepts the same first optional argument as

\multistep but it was left out above.)

\overlays is another shorthand macro for executing



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

146

several steps successively. In contrast to \multistep,

it doesn’t print things after each other, but over each

other. The syntax is

\overlays[〈activatefirst〉]{〈n〉}{〈stepcontents〉}

where 〈n〉 is the number of steps. Inside

〈stepcontents〉, a counter substep can be

evaluated which tells the number of the current

instance.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

147

\restep , \rebstep , \reswitch , \redstep , \revstep .

Frequently, it is desirable for two or more steps to

appear at the same time, for instance to fill in

arguments at several places in a formula at once.

\restep{〈stepcontents〉} is identical with

\step{〈stepcontents〉}, but is activated at the

same time as the previous occurrence of \step.

\rebstep , \reswitch , \redstep , and

\revstep do the same for \bstep, \switch,

\dstep, and \vstep.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

148

8.3 Controlling the order of display

8.3.1 Optional arguments of \step

The variants of \step take two optional arguments for

influencing the mode of activation, like this:

\step[〈activatefirst〉][〈whenactive〉]{〈stepcontents〉} .

Both 〈activatefirst〉 and 〈whenactive〉 should be

conditions in the syntax of the \ifthenelse command.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

149

〈activatefirst〉 checks whether this \step is to be

activated for the first time. The default value is

\value{step}=\value{stepcommand} . By using

\value{step}=〈n〉, this \step can be forced to appear

as the nth one.

〈whenactive〉 checks whether this \step is to be

considered active at all. The default behaviour is to check

whether this \step has been activated before (this is

saved internally for every step).



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

150

8.3.2 Finding out what’s going on

Inside 〈settings〉 and 〈contents〉, you can refer to the

following internal state variables which provide information

about the current state of the process executed by

\stepwise:

counter: firststep The number from which to start

counting steps (see counter step below). Is 0 by

default and 1 for starred versions of \stepwise. You

can set this in 〈settings〉 for special effects.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

151

counter: totalsteps The total number of \step

commands occurring in 〈contents〉.

counter: step The number of the current iteration,

i. e. the number of the current page in the sequence

of pages produced by \stepwise. Runs from

\value{firststep} to \value{totalsteps}.

counter: stepcommand The number of the \step

command currently being executed.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

152

boolean: firstactivation true if this \step is

active for the first time, false otherwise.

boolean: active true if this \step is currently active,

false otherwise.

stepcommand, firstactivation, and active are useful

only inside 〈stepcontents〉.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

153

8.3.3 \afterstep

It might be neccessary to set some parameters which

affect the appearance of the page (like page transitions)

inside 〈stepcontents〉. However, the \step commands

are usually placed deeply inside some structure, so that all

local settings are likely to be undone by groups closing

before the page is completed.

\afterstep{〈settings〉} puts 〈settings〉 right before

the end of the page, after the current step is performed.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

154

Things to pay attention to

1. There can be only one effective value for 〈settings〉.
Every occurrence of \afterstep overwrites this

value globally.

2. \afterstep will not be executed in 〈stepcontents〉
if the corresponding \step is not active, even if

〈stepcontents〉 is displayed owing to a redefinition

of \hidestepcontents.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

155

8.4 Page transitions and automatic advancing

8.4.1 Page transitions

These commands work only if the hyperref package is

loaded.

The following page transition commands are defined:

h \pageTransitionSplitHO Split Horizontally to the

outside.

h \pageTransitionSplitHI Split Horizontally to the

inside.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

156

h \pageTransitionSplitVO Split Vertically to the

outside.

h \pageTransitionSplitVI Split Vertically to the inside.

h \pageTransitionBlindsH Horizontal Blinds.

h \pageTransitionBlindsV Vertical Blinds.

h \pageTransitionBoxO Growing Box.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

157

h \pageTransitionBoxI Shrinking Box.

h \pageTransitionWipe{〈angle〉}
Wipe from one edge of the page to the facing edge.

〈angle〉 is a number between 0 and 360 which

specifies the direction (in degrees) in which to wipe.

Apparently, only the values 0, 90, 180, 270 are

supported.

h \pageTransitionDissolve Dissolve.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

158

h \pageTransitionGlitter{〈angle〉}
Glitter from one edge of the page to the facing edge.

〈angle〉 is a number between 0 and 360 giving the

direction (in degrees) in which to glitter.

Apparently, only the values 0, 270, 315 are supported.

h \pageTransitionReplace Simple Replace (the

default).



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

159

Things to pay attention to

1. The setting of the page transition is a property of the

page, i. e. whatever page transition is in effect when

a page break occurs, will be assigned to the

corresponding pdf page.

2. The page transition setting is local to groups.

Make sure no LATEX environment is ended between a

\pageTransition setting and the next page break.

In particular, in 〈stepcontents〉, \afterstep should

be used.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

160

3. Setting page transitions works well with \pause.

Here, \pause acts as a page break, i. e. a different

page transition can be set before every occurrence of

\pause.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

161

8.4.2 Automatic advancing of pages

If you have loaded the hyperref package, then the

following command is defined which enables automatic

advancing of pdf pages.

h \pageDuration{〈dur〉} causes pages to be advanced

automatically every 〈dur〉 seconds. 〈dur〉 should be a

non-negative fixed-point number.

Depending on the pdf viewer, this will happen only in

full-screen mode.



Stephan Lehmke Dynamic Presentations with TEXPower

8 Incremental display

162

The same restrictions as for page transitions apply. In

particular, the page duration setting is undone by the end

of a group, i. e. it is useless to set the page duration if a

LATEX environment ends before the next page break.

There is no ‘neutral’ value for 〈dur〉 (0 means advance as

fast as possible). You can make automatic advancing stop

by calling \pageDuration{}. texpower offers the

custom command

h \stopAdvancing

to do this.



Stephan Lehmke Dynamic Presentations with TEXPower

9 Designing a Presentation

163

9.1 Conference Talks

9.1.1 Structure

• No deep sectioning neccessary; either ‘slide titles’ or

one level of sectioning.

• Number slides 1–n.



Stephan Lehmke Dynamic Presentations with TEXPower

9 Designing a Presentation

164

9.1.2 Slide design

• Put name of presenter and title of talk on every slide.

• Adhere to ‘corporate design’.

• Ensure readability in case of bad viewing conditions.

9.1.3 Navigation

• Mainly by buttons on the slide.

• Avoid too many builds or transition effects in case of

bad hardware / missing remote control.



Stephan Lehmke Dynamic Presentations with TEXPower

9 Designing a Presentation

165

9.2 Lectures

9.2.1 Structure

• Keep ‘in sync’ with structure of lecture notes – deep

sectioning starting from chapter.

• Slide numbering c.s.n makes references to slides more

robust.



Stephan Lehmke Dynamic Presentations with TEXPower

9 Designing a Presentation

166

9.2.2 Slide design

• Keep decoration minimal; name of lecture and lecturer

are known.

• No need for ‘corporate design’.

• Controlled viewing conditions.



Stephan Lehmke Dynamic Presentations with TEXPower

9 Designing a Presentation

167

9.2.3 Navigation

• Mainly by bookmarks.

• Provide ‘reference links’.

• Use remote control.

• Transition effects get boring.



Stephan Lehmke Dynamic Presentations with TEXPower

10 Typical Applications

168

10.1 Presenting Text



Stephan Lehmke Dynamic Presentations with TEXPower

10 Typical Applications

169

10.2 Presenting Mathematics



Stephan Lehmke Dynamic Presentations with TEXPower

10 Typical Applications

170

10.3 Presenting Graphics



Stephan Lehmke Dynamic Presentations with TEXPower

10 Typical Applications

171

10.3.1 Included Graphics



Stephan Lehmke Dynamic Presentations with TEXPower

10 Typical Applications

172

10.3.2 Inline Graphics



Stephan Lehmke Dynamic Presentations with TEXPower

10 Typical Applications

173

10.3.3 Combining Text, Maths, and Graphics



Stephan Lehmke Dynamic Presentations with TEXPower

10 Typical Applications

174

10.4 Designing Custom Display Commands


