The $\mathrm{T}_{\mathrm{E}} \mathrm{XP}$ Power bundle

TEXPower Example: Package tpslifonts

Stephan Lehmke
University of Dortmund
Department of Computer Science I
mailto:Stephan.Lehmke@udo.edu

July 27, 2004

This is the demonstration document for tpslifonts, TEXPower's slide fonts configuration package.

Beamer and overhead presentations are often viewed under peculiar circumstances. Especially for presentations which are projected directly 'out of the computer', low power of the beamer, low resolution and an abundance of colors can lead to severe readability problems.

It is therefore of utmost importance to optimize font selection as much as possible towards readability.

The package tpslifonts offers a couple of 'harmonising' combinations of text and math fonts from the (distant) relatives of computer modern fonts, with a couple of extras for optimising readability.

The package offers the following features:

1. Text fonts from computer modern roman, computer modern sans serif, SliTEX computer modern sans serif, computer modern bright, or concrete roman.
2. Math fonts from computer modern math, computer modern bright math, or Euler fonts.
3. Support of additional symbol fonts like AMS symbols or doublestroke.
4. All fonts configured for 'smooth scaling' (like in the type1cm package).
5. Avoiding fonts not freely available in Type 1 format.
6. Careful design size selection for optimum readability.

In the following, the fonts configured by this package are listed, augmented by font samples and some larger examples which hopefully allow to review the configuration parameters.

Note that there are a couple of options and parameter settings in the preamble of slifontsexample.tex which allow to try different configuration variants.

This document has been typeset using T1 font encoding.

1 Text Fonts

Package tpslifonts has configured the following text fonts:
European Computer Modern Roman Medium (ecrm):
The quick brown fox jumps over the lazy dog.
European Computer Modern Roman Slanted (ecsl):
The quick brown fox jumps over the lazy dog.
European Computer Modern Text Italic (ecti):
The quick brown fox jumps over the lazy dog.

European Computer Modern Caps and Small Caps (eccc):
The quick brown fox jumps over the lazy dog.
European Computer Modern Bold Extend Roman (ecbx): The quick brown fox jumps over the lazy dog.

European Computer Modern Roman Bold (Non-Extended) (ecrb): The quick brown fox jumps over the lazy dog.

European Computer Modern Bold Extended Text Italic (ecbi):
The quick brown fox jumps over the lazy dog.
European Computer Modern Bold Extended Slanted Roman (ecbl): The quick brown fox jumps over the lazy dog.

European Computer Modern Bold Extended Caps and Small Caps (ecxc):
The quick brown fox Jumps over the lazy dog.
European Computer Modern Unslanted Italic (ecui):
The quick brown fox jumps over the lazy dog.

European Computer Modern Dunhill Roman (ecdh):
The quick brown fox jumps over the lazy dog.
European Computer Modern Fibonacci Font (ecfb):
The quick brown fox jumps over the lazy dog.
European Computer Modern Fibonacci Slanted Font (ecfs): The quick brown fox jumps over the lazy dog.

2 Typewriter Fonts

Package tpslifonts has configured the following typewriter fonts:
European Computer Modern Typewriter (ectt):
The quick brown fox jumps over the lazy dog.
European Computer Modern Italic Typewriter Text (ecit):
The quick brown fox jumps over the lazy dog.
European Computer Modern Slanted Typewriter Text (ecst):
The quick brown fox jumps over the lazy dog.

European Computer Modern Typewritr Caps and Small Caps (ectc):
The quick brown fox Jumps over the lazy dog.

3 Math Fonts

The main math fonts are derived from the Computer Modern Math fonts.

Operators, digits, some symbols and upper case greek letters are taken from Computer Modern Roman (cmr):
min max sup lim $12345+=Ф П Г \Theta$
Latin and lower case greek letters and some symbols are taken from Computer Modern Math Italic (cmmi):
$a b c d A B C D>/<\alpha \beta \gamma \delta$
Symbols and calligraphic letters are taken from Computer Modern Math Symbols (cmsy):
$\mathcal{A B C}-* \div \equiv \leq \forall \cap \cup \nabla \neq$

Large and growing symbols are taken from Computer Modern Math Extension (cmex).

Fraktur letters, blackboard bold letters, and a lot of additional math symbols are taken from the AMS math fonts (msam, msbm, eufm):
$\mathfrak{a b c d a} \mathfrak{B C} \mathfrak{D N Z Q R} \cap \boxtimes \succsim \subseteq \nsubseteq \curvearrowright C \varnothing$
Additional math symbols are taken from St Mary's Road symbol font (stmary):

Additional symbols are taken from Waldis symbol font (wasy):
$\oiiint \%$ ত \varnothing © $+0^{7}$
Upper case script letters are taken from Ralph Smith Formal Script (rsfs):
$\mathscr{A} \mathscr{B} \mathscr{C} \mathscr{E} \mathscr{F} \mathscr{G} \mathscr{H} \mathscr{J} \mathscr{K} \mathscr{L} \mathscr{M} \mathscr{O} \mathscr{P} \mathscr{Q} \mathscr{S} \mathscr{T} \mathscr{U} \mathscr{W} \mathscr{X} \mathscr{Y}$

Double stroke letters are taken from Doublestroke Font (dsss): AIIBCIDIEIFGIHIIIIKILIMIN©IPQIRSTUUVIWXXYZZIIhlk

3.1 Math Examples

Next, some examples of math formulae so you can see how the fonts work together (translations from german done by me).

From The Book.
(D) The functions f and g fulfil the same functional equation: $f\left(\frac{x}{2}\right)+f\left(\frac{x+1}{2}\right)=2 f(x)$ and $g\left(\frac{x}{2}\right)+g\left(\frac{x+1}{2}\right)=2 g(x)$.
For $f(x)$, we obtain this from the addition formulas for the sine and cosine:

$$
\begin{aligned}
f\left(\frac{x}{2}\right)+f\left(\frac{x+1}{2}\right) & =\pi\left[\frac{\cos \frac{\pi x}{2}}{\sin \frac{\pi x}{2}}-\frac{\sin \frac{\pi x}{2}}{\cos \frac{\pi x}{2}}\right] \\
& =2 \pi \frac{\cos \left(\frac{\pi x}{2}+\frac{\pi x}{2}\right)}{\sin \left(\frac{\pi x}{2}+\frac{\pi x}{2}\right)}=2 f(x) .
\end{aligned}
$$

The functional equation for g follows from

$$
g_{N}\left(\frac{x}{2}\right)+g_{N}\left(\frac{x+1}{2}\right)=2 g_{2 N}(x)+\frac{2}{x+2 N+1} .
$$

From an undergrad book on calculus.

$$
\begin{aligned}
c_{k} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-\mathrm{i} k x} \mathrm{~d} x=\frac{1}{2 \pi} \sum_{j=1}^{r} \int_{t_{j-1}}^{t_{j}} f(x) e^{-\mathrm{i} k x} \mathrm{~d} x \\
& =\frac{-\mathrm{i}}{2 \pi k} \int_{0}^{2 \pi} \varphi(x) e^{-\mathrm{i} k x} \mathrm{~d} x=\frac{-\mathrm{i} \gamma_{k}}{k} .
\end{aligned}
$$

As for all $\alpha, \beta \in \mathbb{C},|\alpha \beta| \leq \frac{1}{2}\left(|\alpha|^{2}+|\beta|^{2}\right)$, it holds that

$$
\left|c_{k}\right| \leq \frac{1}{2}\left(\frac{1}{|k|^{2}}+\left|\gamma_{k}\right|^{2}\right)
$$

From the convergence of $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$ and $\sum_{k=-\infty}^{\infty}\left|\gamma_{k}\right|^{2}$, it follows that

$$
\sum_{k=-\infty}^{\infty}\left|c_{k}\right|<\infty
$$

From an undergrad book on calculus (2nd volume).
By Fubini's theorem,

$$
\begin{equation*}
\int_{Z_{\varepsilon}} \operatorname{div} F \mathrm{~d} x=\sum_{k=1}^{n} \underbrace{\int_{Q^{\prime}}\left(\int_{-\infty}^{h\left(x^{\prime}\right)-\varepsilon} \partial_{k} F_{k}\left(x^{\prime}, x_{n}\right) \mathrm{d} x_{n}\right) \mathrm{d} x^{\prime}}_{=: I_{k}} . \tag{9}
\end{equation*}
$$

Evaluation of I_{k} : Obviously,

$$
I_{n}=\int_{Q^{\prime}} F_{n}\left(x^{\prime}, h\left(x^{\prime}-\varepsilon\right)\right) \mathrm{d} x^{\prime}
$$

In the case $1 \leq k \leq n-1$, we employ the identity

$$
\begin{aligned}
\partial_{k}\left(\int_{-\infty}^{h\left(x^{\prime}\right)-\varepsilon} F_{k}\left(x^{\prime}, x_{n}\right) \mathrm{d} x_{n}\right)= & \int_{-\infty}^{h\left(x^{\prime}\right)-\varepsilon} \partial_{k} F_{k}\left(x^{\prime}, x_{n}\right) \mathrm{d} x_{n} \\
& +F_{k}\left(x^{\prime}, h\left(x^{\prime}-\varepsilon\right)\right) \cdot \partial_{k} h\left(x^{\prime}\right) .
\end{aligned}
$$

From a book on functional analysis.
Definition 25 Let \mathcal{C} and \mathcal{D} be categories and \mathcal{F}, \mathcal{G} functors from \mathcal{C} into \mathcal{D}. A mapping $\eta: \operatorname{ObC} \rightarrow \operatorname{Mor} \mathcal{D}$ is called a natural transformation between \mathcal{F} and \mathcal{G} if
(i) $\forall A \in \operatorname{Ob} \mathcal{C}: \eta(A) \in \operatorname{Mor}_{\mathcal{D}}(\mathcal{F}(A), \mathcal{G}(A))$
(ii) $\forall A, B \in \operatorname{Ob} \mathcal{C} \forall f \in \operatorname{Mor}_{\mathcal{C}}(A, B)$:

$$
\begin{aligned}
& \mathcal{F}(A) \xrightarrow{\mathcal{F}(f)} \mathcal{F}(B) \\
& \eta(A) \downarrow \quad \downarrow \eta(B) \quad \text { or } \quad \eta(A) \downarrow \\
& \mathcal{F}(A) \stackrel{\mathcal{F}(f)}{\rightleftarrows} \mathcal{F}(B) \\
& \mathcal{G}(A) \xrightarrow[\mathcal{G}(f)]{ } \mathcal{G}(B) \\
& \mathcal{G}(A) \underset{\mathcal{G}(f)}{\leftrightarrows} \mathcal{G}(B)
\end{aligned}
$$

respectively, commute, if \mathcal{F}, \mathcal{G} are covariant or contravariant, respectively.
This is denoted as $\eta: \mathcal{F} \rightarrow \mathcal{G}$. Such a natural transformation is called a natural equivalence between \mathcal{F} and \mathcal{G} if $\eta(A)$ is an isomorphism for every $A \in \mathrm{Ob} \mathcal{C}$.

From an undergrad book on linear algebra.
Step 2. Determine an eigenvector v_{2} for an eigenvalue λ_{2} of F_{2} (λ_{2} is also an eigenvalue of F_{1}). Next, determine a $j_{2} \in\{1, \ldots, n\}$ such that

$$
\mathfrak{B}_{3}:=\left(v_{1}, v_{2}, w_{1}, \ldots, \widehat{w_{j_{1}}}, \ldots, \widehat{w_{j_{2}}}, \ldots, w_{n}\right)
$$

is a base of V.
Next, calculate

$$
M_{\mathfrak{B}_{3}}(F)=\left(\begin{array}{cccccccc}
\lambda_{1} & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & \lambda_{2} & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 0 & \cdot & & & & \\
\cdot & \cdot & & & & & \\
\cdot & \cdot & & & A_{3} & & \\
\cdot & \cdot & & & & & \\
0 & 0 & & & & &
\end{array}\right)
$$

If $W_{3}:=\operatorname{Span}\left(w_{1}, \ldots, \widehat{w_{j_{1}}}, \ldots, \widehat{w_{j_{2}}}, \ldots, w_{n}\right)$, then A_{3} determines a linear mapping $F_{3}: W_{3} \rightarrow W_{3}$.

From an undergrad book on linear algebra (2nd volume).
Remark. If $\left(Y_{i}\right)_{i \in I}$ is a family of affine subspaces Y_{i} of an affine space X, then

$$
Y:=\bigcup_{i \in I} Y_{i} \subset X
$$

is again an affine subspace. If $Y \neq \emptyset$, then

$$
T(Y)=\bigcup_{i \in I} T\left(Y_{i}\right)
$$

Proof. For $Y=\emptyset$, nothing is to be proved. Otherwise, there is a fixed point $p_{0} \in Y$ such that

$$
\begin{aligned}
T(Y) & =\left\{\overrightarrow{p_{0} q} \in T(X) \mid q \in \bigcup_{i \in I} Y_{i}\right\} \\
& =\bigcup_{i \in I}\left\{\overrightarrow{p_{0} q} \in T(X) \mid q \in Y_{i}\right\}=\bigcup_{i \in I} T\left(Y_{i}\right)
\end{aligned}
$$

From this, both claims follow.

From a book on measure theory.
Analogously, the general associativity of σ-Algebra products is shown, that is
(23.12)

$$
\left(\bigotimes_{i=1}^{m} \mathscr{A}_{i}\right) \otimes\left(\bigotimes_{i=m+1}^{n} \mathscr{A}_{i}\right)=\bigotimes_{i=1}^{n} \mathscr{A}_{i} \quad(1 \leq m<n) .
$$

Statement (23.11) allows to prove the existence of the product measure for all $n \geq 2$ by induction.
23.9 Theorem For σ-finite measures μ_{1}, \ldots, μ_{n} on $\mathscr{A}_{1}, \ldots, \mathscr{A}_{n}$, there exists exactly one measure π on $\mathscr{A}_{1} \otimes \cdots \otimes \mathscr{A}_{n}$ such that
(23.13)
$\pi\left(A_{1} \times \cdots \times A_{n}\right)=\mu_{1}\left(A_{1}\right) \cdots \mu_{n}\left(A_{n}\right)$
for all $A_{i} \in \mathscr{A}_{i}(i=1, \ldots, n)$. Here, π is also σ-finite.

From a book on probability theory.
17.3 Lemma If T takes values exclusively from \mathbb{N}, then X_{T} is an \mathscr{F}_{T}-measurable random variable with values in $\left(\Omega^{\prime}, \mathscr{A}^{\prime}\right)$. If only $P\{T<+\infty\}=1$ holds, then up to P-almost certain equality there exists exactly one \mathscr{F}_{T}-measurable random variable X^{*} with values in $\left(\Omega^{\prime}, \mathscr{A}^{\prime}\right)$ which fulfils the condition

$$
\begin{equation*}
X^{*}(\omega)=X_{T(\omega)}(\omega) \quad \text { for all } \omega \in\{T<\infty\} \tag{17.7}
\end{equation*}
$$

Proof. It suffices to treat the second case and provide an \mathscr{F}_{T}-measurable random variable fulfilling the given condition. To this end, choose an arbitrary $\omega^{\prime} \in \Omega^{\prime}$. We set

$$
X^{*}(\omega):= \begin{cases}X_{T(\omega)}(\omega), & \omega \in\{T<\infty\} \\ \omega^{\prime}, & \omega \in\{T=\infty\}\end{cases}
$$

For every $A^{\prime} \in \mathscr{A}^{\prime}$, it is to be proved that $A:=\left\{X^{*} \in A^{\prime}\right\}$ is an element of \mathscr{F}_{T}.

From my MSc Thesis.
If we expand equations (4.102) and (4.103), we get

$$
\begin{aligned}
& \left(\sum_{q \in \mathrm{PV}} \max (M(q), M(\neg q))\right)-\delta \\
& \quad=\sum_{\substack{q \in \mathrm{PV} \\
q \neq p}} \max \binom{\frac{m}{M_{>s}^{\prime}(\neg p)} \cdot M_{>s}^{\prime}(q)+\frac{m}{M_{s}^{\prime}(p)} \cdot M_{s}^{\prime}(q),}{\frac{m}{M_{>s}^{\prime}(\neg p)} \cdot M_{>s}^{\prime}(\neg q)+\frac{m}{M_{s}^{\prime}(p)} \cdot M_{s}^{\prime}(\neg q)} \\
& \quad-\frac{m}{M_{>s}^{\prime}(\neg p)} \cdot \delta_{>s}^{\prime}-\frac{m}{M_{s}^{\prime}(p)} \cdot \delta_{s}^{\prime} \\
& \quad-\left(\frac{m}{M_{>s}^{\prime}(\neg p)}-1\right) \cdot r_{1}-\left(\frac{m}{M_{s}^{\prime}(p)}-1\right) \cdot r_{2} \\
& \quad-\max \left(r_{1}, r_{2}\right)+m
\end{aligned}
$$

From my PhD Thesis.

By Lemma 2.2.7,

$$
d_{\bar{a} \uplus d^{\prime} \bar{b}=\left(d \curlyvee \delta\left(d^{d^{\prime}} \bar{b}\right)\right) \overline{ } a \sqcap \alpha\left(d^{\prime} \bar{b}\right)}
$$

Furthermore,

$$
\begin{aligned}
d & \preccurlyeq d \curlyvee \delta\left(d^{\prime} \bar{b}\right), \\
a \sqcap \alpha\left(d^{\prime} \bar{b}\right) & \sqsubseteq a .
\end{aligned}
$$

From this,

$$
{ }^{d_{\bar{a}}} \subseteq{ }^{d} \bar{a} \uplus{ }^{d^{\prime}} \bar{b}
$$

follows by (2.3).

